Preoperative Axillary Ultrasound to Detect Lymph Node Metastasis in Early Breast Cancer: A Prospective Trial

Siriporn Bureewong, MD1, Suthinee Posri, MD2

¹ Department of Surgery, Chao Phraya Abhaibheubejhr Hospital, Prachinburi, Thailand; ² Department of Radiology, Chao Phraya Abhaibheubejhr Hospital, Prachinburi, Thailand

Background: De-escalation of axillary surgery has become an important focus in early-stage breast cancer management. While sentinel lymph node biopsy (SLNB) remains the standard for clinically node-negative patients, it provides no therapeutic benefit and carries potential complications. Axillary ultrasound has emerged as a less invasive modality for nodal assessment, although criteria for defining suspicious lymph nodes vary across studies.

Objective: To evaluate the value of preoperative axillary ultrasound for detecting lymph node metastasis in early breast cancer.

Materials and Methods: The present study was a prospective study enrolled 81 women with early-stage breast cancer and clinically negative axilla at Chao Phraya Abhaibhubej Hospital, Thailand between March 2022 and April 2024. Preoperative axillary ultrasound was performed one day prior to surgery, with cortical thickness greater than 3 mm or absence of fatty hilum defined as suspicious. All patients underwent breast surgery with SLNB, followed by frozen section and completion axillary lymph node dissection (ALND) if positive. Clinical, pathological, and imaging data were analyzed.

Results: The mean age was 55.7 years, and the mean tumor size was 2.5 cm. Preoperative ultrasound identified suspicious nodes in 36 patients (44.4%). Pathology confirmed sentinel lymph node metastasis in 30 patients (37.0%). Axillary ultrasound demonstrated a sensitivity of 93.3% (95% CI 85.9 to 100.0), specificity of 84.3% (95% CI 74.6 to 94.0), positive predictive value (PPV) of 77.8%, and negative predictive value (NPV) of 95.6%. Subgroup analysis revealed that cortical thickening and loss of fatty hilum were significant predictors of nodal metastasis.

Conclusion: Preoperative axillary ultrasound, when applying cortical thickness and fatty hilum criteria, achieved high sensitivity and NPV in detecting nodal metastasis in early breast cancer. These findings support its role as a practical and minimally invasive tool to guide surgical decision-making and potentially reduce the need for axillary surgery, particularly in resource-limited settings.

Keywords: Breast cancer; Axillary ultrasound; Lymph node metastasis

Received 17 April 2025 | Revised 6 October 2025 | Accepted 22 October 2025

J Med Assoc Thai 2025; 108(11): 906-11

Website: http://www.jmatonline.com

De-escalation of axillary surgery has become a key focus in the management of early-stage breast cancer. Large prospective trials, including the SOUND⁽¹⁾, ISEMA⁽²⁾, and BOOG⁽³⁾ studies, have recently demonstrated that omission of axillary surgery results in oncologic outcomes non-inferior to those of sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND).

Nevertheless, axillary nodal status remains a

Correspondence to:

Bureewong S.

Department of Surgery, Chao Phraya Abhaibheubajhr Hospital, 32/7 Moo 12, Prachin Anusorn Road, Muang, Prachinburi 25000, Thailand. Phone: +66-80-2361110

Email: siriporn.saosy@gmail.com

How to cite this article:

Bureewong S, Posri S. Preoperative Axillary Ultrasound to Detect Lymph Node Metastasis in Early Breast Cancer: A Prospective Trial. J Med Assoc Thai 2025;108:906-11.

DOI: 10.35755/jmedassocthai.2025.11.906-911-03028

pivotal determinant for disease staging and treatment planning, particularly in guiding systemic therapy and radiation⁽⁴⁾. Accordingly, accurate preoperative nodal assessment continues to be clinically relevant.

Axillary ultrasound is widely employed as a non-invasive tool for breast cancer evaluation. In addition to assessing tumor size, it enables characterization of axillary lymph nodes and provides guidance for biopsy when indicated⁽⁵⁾. Recent studies have examined its utility, with or without tissue sampling, for nodal staging. However, the criteria for defining suspicious lymph nodes remain heterogeneous⁽⁶⁻⁸⁾. In real-world practice, particularly in resource-limited settings, features such as cortical thickness greater than 3 mm and absence of the fatty hilum are frequently used, though their diagnostic validity has not been consistently validated.

The present study investigated the clinical value of preoperative axillary ultrasound in early breast cancer by applying these criteria to predict

Figure 1. Normal lymph node from ultrasound.

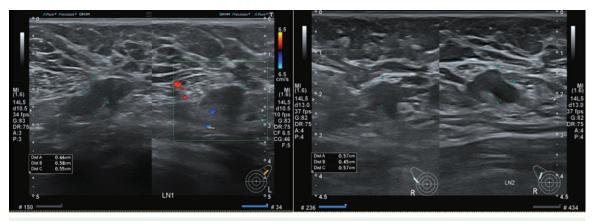


Figure 2. Suspicious lymph node with cortical thickening.

lymph node metastasis, benchmarking against pathological findings, and exploring its potential role in minimizing the need for axillary surgery.

Materials and Methods

The present study was a prospective study conducted at Chao Phraya Abhaibhubej Hospital, a provincial hospital in Thailand. Eligible participants were women aged older than 20 years with early-stage breast cancer, thus a tumor size of 5 cm or less, including ductal carcinoma in situ (DCIS) confirmed by core needle biopsy and clinically impalpable axillary lymph nodes. All patients were scheduled for breast surgery, either for breast-conserving surgery or mastectomy, with SLNB.

Preoperative axillary ultrasound was performed one day before surgery to assess ipsilateral axillary lymph nodes. A single radiologist conducted all examinations, classifying nodes as normal or suspicious. Suspicious criteria included cortical thickness greater than 3 mm, focal or diffuse, or absence of the central hyperechoic hilum (Figure 1-3).

Surgical procedures, including mastectomy or wide excision, were performed according to clinical indications and patient preference. All surgeries were conducted by a single breast surgeon. SLNB was performed using 1% isosulfan blue dye of 2 mL, injected beneath the nipple-areolar complex. Bluestained nodes and adjacent nodes were excised and examined by frozen section. In cases with positive frozen section results, ALND was performed.

Patient demographic and clinical data, including age, body weight, height, body mass index (BMI), tumor size, and surgical procedures, were recorded. The number of sentinel nodes removed was documented. Tumor subtypes were classified according to receptor status, which are estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Patients were grouped into four categories as ER/PR positive, ER/PR/HER2 positive, HER2 positive, and triple negative.

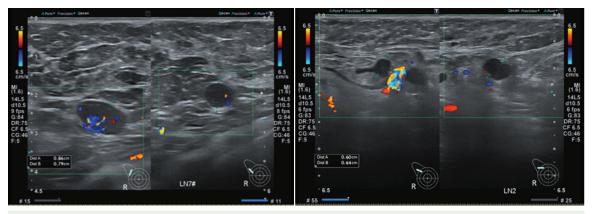


Figure 3. Suspicious lymph node with loss of hilum.

Statistical analysis

Statistical analyses were performed using Stata Statistical Software, version 18 (StataCorp LLC, College Station, TX, USA). Descriptive statistics were expressed as mean (range) for continuous variables and number (percentage) for categorical variables. Diagnostic performance of axillary ultrasound was assessed by calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Subgroup analysis was performed using the Cox regression test to evaluate the association between sonographic features and nodal metastasis.

Ethics approval

The present study was approved by the Ethics Committee of Chao Phraya Abhaibheubajhr Hospital under document number IRB-BHUBEJHR-351.

Results

Between March 2022 and April 2024, 81 female patients were enrolled. The mean age was 55.7 years (range 29 to 84), and the mean BMI was 26.2 kg/m² (range 17.5 to 40.5). Histopathological diagnoses included invasive ductal carcinoma in 69 patients, mucinous carcinoma in five, and pure DCIS in five. The mean tumor size was 2.5 cm (range 0.5 to 5.0) (Table 1).

Preoperative axillary ultrasound identified suspicious lymph nodes in 36 patients (44.4%), whereas 45 patients (55.6%) showed no suspicious findings.

With respect to surgical procedures, 60 patients (74.1%) underwent mastectomy with SLNB, while 21 patients (25.9%) received breast-conserving surgery. SLNB was technically successful in all cases, with a mean of 3.7 lymph nodes excised per patient (range 2

Table 1. Patients' characteristic (n=81)

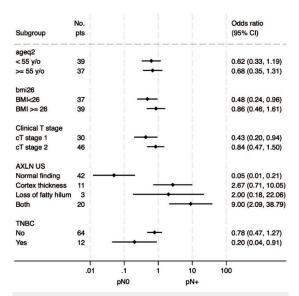
Baseline characteristics	
Age (years); mean (range)	55.7 (29 to 84)
BMI (kg/m²); mean (range)	26.2 (17.5 to 40.47)
Tumor size (cm); mean (range)	2.5 (0.5 to 5.0)
Histology; n (%)	
Invasive ductal carcinoma	69 (85.2)
Mucinous carcinoma.	5 (6.2)
DCIS	5 (6.2)
Tumor subtype; n (%)	
Luminal (ER/PR+, HER2-)	40 (49.4)
Luminal HER2 (ER/PR+, HER2+)	22 (27.2)
Triple negative	13 (16.1)

BMI=body mass index; DCIS=ductal carcinoma in situ; ER=estrogen receptor; PR=progesterone receptor; HER2=human epidermal growth factor receptor 2

to 7). Pathological analysis revealed positive sentinel lymph nodes in 30 patients (37.0%).

Regarding molecular subtypes, 40 patients (49.4%) had ER/PR-positive and HER2-negative tumors, 22 (27.2%) had ER/PR-positive and HER2-positive tumors, six (7.4%) had HER2-positive tumors, and 13 (16.1%) had triple-negative breast cancer.

Preoperative axillary ultrasound demonstrated a sensitivity of 93.3% (95% CI 77.9 to 99.2) and specificity of 84.3% (95% CI 71.4 to 93.0) for predicting nodal metastasis. The PPV and NPV were 77.8% and 95.6%, respectively. The false-negative rate was 6.7%, and the false-positive rate was 15.7% (Table 2). Subgroup analysis revealed that both cortical thickness greater than 3 mm and loss of fatty hilum were significantly associated with nodal metastasis (Figure 4).


Discussion

SLNB remains the standard procedure for

Table 2. Diagnostic performance of axillary ultrasound

Parameter	Value (%)	95% CI
Sensitivity	93.3	77.9 to 99.2
Specificity	84.3	71.4 to 93.0
PPV	77.8	60.8 to 89.9
NPV	95.6	84.9 to 99.5
False negative rate	6.7	
False positive rate	15.7	

PPV=positive predictive value; NPV=negative predictive value; CI=confidence interval

Figure 4. Subgroup analysis for prognostic factor in pathologic lymph node.

AXLN US=axillary lymph node ultrasound, TNBC=triple negative breast cancer

managing clinically node-negative breast cancer. Evidence from randomized controlled trials has demonstrated no significant differences in locoregional control, disease-free survival, or overall survival between SLNB and ALND⁽⁹⁻¹⁴⁾ in patients with negative SLNB results, suggesting that the therapeutic benefit of axillary surgery is minimal. While SLNB is valuable for anatomic staging, it provides no therapeutic advantage and still carries risks of complications^(15,16), prompting investigations into less invasive alternatives.

Axillary ultrasound has emerged as a promising tool for detecting nodal metastasis. Meta-analyses have reported sensitivities ranging from 48.8% to 87.1% and specificities from 55.6% to 97.3%, with further improvement in specificity when fine-needle aspiration (FNA) is performed⁽¹⁷⁻¹⁹⁾. Variation in diagnostic accuracy is attributable to differences in

criteria for defining suspicious lymph nodes. Notably, large clinical trials such as SOUND⁽¹⁾, INSEMA⁽²⁾, and BOOG 2013-08⁽³⁾ demonstrated non-inferiority of omitting axillary surgery in selected patients with negative axillary ultrasound, though each employed different morphologic criteria.

In the present study, cortical thickness greater than 3 mm and loss of fatty hilum were used as sonographic criteria, consistent with prior evidence identifying these features as significant indicators of nodal metastasis. Using these definitions, axillary ultrasound achieved high sensitivity of 93.3% and NPV of 95.6%, underscoring its reliability in excluding nodal disease. However, the moderate PPV highlights a risk of overestimating suspicious findings, suggesting that FNA or core needle biopsy may be useful for confirmation in selected patients.

The present study results also demonstrated concordance between axillary ultrasound and SLNB, despite resource limitations that necessitated the use of blue dye alone for mapping. This approach, previously validated by studies in the authors' institution⁽²⁰⁾, achieved detection rates comparable to those reported elsewhere. Furthermore, subgroup analysis confirmed that both cortical thickening and hilar effacement were significant predictors of nodal metastasis, supporting their role as practical sonographic markers in routine practice.

The present study had limitations. It was conducted at a single provincial hospital with a small sample size, which may limit the generalizability of the findings. In addition, all examinations were performed by a single radiologist and surgeon, potentially introducing observer bias. Future multicenter studies with larger populations and standardized ultrasound protocols are warranted to validate these results.

Conclusion

Preoperative axillary ultrasound, when applying specific morphologic criteria, demonstrated high sensitivity and NPV for detecting nodal metastasis in early breast cancer. These findings support its role as a valuable adjunct to surgical decision-making, particularly in settings where resources are limited and invasive procedures should be minimized.

What is already known about this topic?

Axillary ultrasound is commonly used to assess axillary lymph node status prior to breast cancer surgery. However, its diagnostic reliability varies

due to heterogeneity in the criteria used to define nodal metastasis.

What does this study add?

The present study demonstrates that axillary ultrasound achieves high sensitivity and specificity when using cortical thickness greater than 3 mm and loss of fatty hilum as diagnostic criteria for suspicious lymph nodes. These findings suggest that axillary ultrasound may serve as a valuable tool to reduce the need for axillary surgery in selected patients.

Acknowledgement

The authors would like to thank Dr. Radchadakorn Meesart for statistical analysis and support for research design.

Conflicts of interest

The author declares no conflict of interest.

References

- 1. Gentilini O, Veronesi U. Abandoning sentinel lymph node biopsy in early breast cancer? A new trial in progress at the European Institute of Oncology of Milan (SOUND: Sentinel node vs Observation after axillary UltraSouND). Breast 2012;21:678-81.
- Reimer T, Stachs A, Nekljudova V, Loibl S, Hartmann S, Wolter K, et al. Restricted axillary staging in clinically and sonographically nodenegative early invasive breast cancer (c/iT1-2) in the context of breast conserving therapy: First results following commencement of the intergroup-sentinelmamma (INSEMA) trial. Geburtshilfe Frauenheilkd 2017;77:149-57.
- van Roozendaal LM, Vane MLG, van Dalen T, van der Hage JA, Strobbe LJA, Boersma LJ, et al. Clinically node negative breast cancer patients undergoing breast conserving therapy, sentinel lymph node procedure versus follow-up: a Dutch randomized controlled multicentre trial (BOOG 2013-08). BMC Cancer 2017;17:459. doi: 10.1186/s12885-017-3443-x.
- Chen MY, Gillanders WE. Staging of the axilla in breast cancer and the evolving role of axillary ultrasound. Breast Cancer (Dove Med Press) 2021;13:311-23.
- Lee B, Lim AK, Krell J, Satchithananda K, Coombes RC, Lewis JS, et al. The efficacy of axillary ultrasound in the detection of nodal metastasis in breast cancer. AJR Am J Roentgenol 2013;200:W314-20.
- Cho N, Moon WK, Han W, Park IA, Cho J, Noh DY. Preoperative sonographic classification of axillary lymph nodes in patients with breast cancer: node-to-node correlation with surgical histology and sentinel node biopsy results. AJR Am J Roentgenol 2009;193:1731-7.

- Bedi DG, Krishnamurthy R, Krishnamurthy S, Edeiken BS, Le-Petross H, Fornage BD, et al. Cortical morphologic features of axillary lymph nodes as a predictor of metastasis in breast cancer: in vitro sonographic study. AJR Am J Roentgenol 2008;191:646-52.
- 8. Yang WT, Chang J, Metreweli C. Patients with breast cancer: differences in color Doppler flow and gray-scale US features of benign and malignant axillary lymph nodes. Radiology 2000;215:568-73.
- Donker M, van Tienhoven G, Straver ME, Meijnen P, van de Velde CJ, Mansel RE, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol 2014;15:1303-10.
- Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Costantino JP, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 2010;11:927-33.
- Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, et al. Sentinel-lymph-node biopsy as a staging procedure in breast cancer: update of a randomised controlled study. Lancet Oncol 2006;7:983-90.
- 12. Mansel RE, Fallowfield L, Kissin M, Goyal A, Newcombe RG, Dixon JM, et al. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst 2006;98:599-609.
- Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumencranz PW, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 2011;305:569-75.
- 14. Galimberti V, Cole BF, Zurrida S, Viale G, Luini A, Veronesi P, et al. Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol 2013;14:297-305.
- Lucci A, McCall LM, Beitsch PD, Whitworth PW, Reintgen DS, Blumencranz PW, et al. Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group Trial Z0011. J Clin Oncol 2007;25:3657-63.
- 16. Fleissig A, Fallowfield LJ, Langridge CI, Johnson L, Newcombe RG, Dixon JM, et al. Post-operative arm morbidity and quality of life. Results of the ALMANAC randomised trial comparing sentinel node biopsy with standard axillary treatment in the management of patients with early breast cancer. Breast Cancer Res Treat 2006;95:279-93.

- 17. Alvarez S, Añorbe E, Alcorta P, López F, Alonso I, Cortés J. Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. AJR Am J Roentgenol 2006;186:1342-8.
- 18. Abe H, Schmidt RA, Kulkarni K, Sennett CA, Mueller JS, Newstead GM. Axillary lymph nodes suspicious for breast cancer metastasis: sampling with US-guided 14-gauge core-needle biopsy--clinical experience in 100 patients. Radiology 2009;250:41-9.
- Mainiero MB, Cinelli CM, Koelliker SL, Graves TA, Chung MA. Axillary ultrasound and fine-needle aspiration in the preoperative evaluation of the breast cancer patient: an algorithm based on tumor size and lymph node appearance. AJR Am J Roentgenol 2010;195:1261-7.
- 20. Bureewong S. Sentinel lymph node biopsy in breast cancer: detection and outcome in Abhaibhubejhr Hospital. Abhaibhubejhr J Med 2022;1:90-6.