

Fatal Adenovirus Infections in Infants Probably Infected with HIV†

DAMRONG BHANTHUMKOSOL, M.D *

Abstract

Adenovirus infections occur commonly in infants and children but are rarely fatal. Although immunosuppression has been associated recently with fatal outcome of adenovirus infections, reports of major morbidity or mortality caused by adenovirus infection in HIV positive patients are infrequent.

This is the first report on fatal adenovirus infections in presumably HIV - positive infants in Thailand. Three infants, aged 4, 8 and 5 months, were hospitalized with diagnoses of pneumonia and ARDS, pneumonia with hepatomegaly and ARDS, and pediatric AIDS with pneumonia, respectively. All the infants died within a few weeks after hospitalization. Serologic tests revealed positive anti - HIV in all three infants. Unfortunately, no additional investigation for definite diagnosis of HIV infection was employed.

Pathological findings from autopsy and post mortem needle biopsies revealed adenovirus pneumonia in the first two infants, and massive adenovirus infection of the liver in the third infant. Diagnoses were based on characteristic light microscopic pathological findings, and demonstration of viral particles arranged in crystalline arrays in the nucleus of the infected cells by electron microscopy.

Adenovirus infection occurs in all age groups, with a wide spectrum of diseases, but is often self-limited and rarely fatal. It is common in preschool children, and is responsible for upto 10 per cent of cases of bronchiolitis and viral pneu-

monia(1). However, severe disease rarely occurs in immunocompetent individuals(2). Recent evidence indicates that immunocompromised hosts may have more severe adenovirus disease with fulminant or disseminated, and may be rapidly progres-

* Institute of Pathology, Department of Medical Services, Ministry of Public Health (In Rajvithi Hospital Compound), Rajthevee, Bangkok 10400, Thailand.

† This paper was presented at the Third International Conference on AIDS in Asia and the Pacific, and The Fifth National AIDS Seminar in Thailand, Chiang Mai, Thailand, September 18, 1995

sive and fatal. The fatal adenovirus infection has been reported in patients immunocompromised by intensive chemotherapy for malignancies, in bone marrow, kidney and liver transplants, primary immunodeficiency and severe combined immunodeficiency diseases in both children and adults(3-14).

Adults infected with human immunodeficiency virus (HIV) has been reported to carry adenovirus(15,16). However, reports of fatal adenovirus infection are rare.

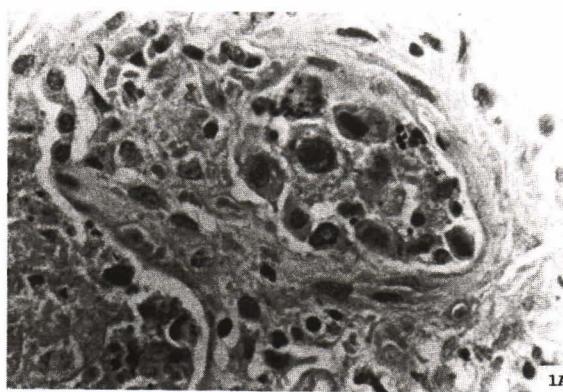
In Thailand, the positive isolation rate of adenovirus from nasopharyngeal secretion of pediatric patients attending the out-patient department with symptoms of respiratory tract infection during the rainy season was 5.5 per cent for the overall age group, and 7.7 per cent for the age under 1.4 years(17,18). In other unpublished reports, the rate of positive virus isolation ranged from 1.5 - 3.7 per cent in hospitalized children under the age of 2 years with symptoms of pneumonia and bronchiolitis. No documented mortality resulting from adenovirus infection has been previously reported.

This is the first report of morbidity and mortality caused by adenovirus infection among presumably HIV - positive infants, in Thailand.

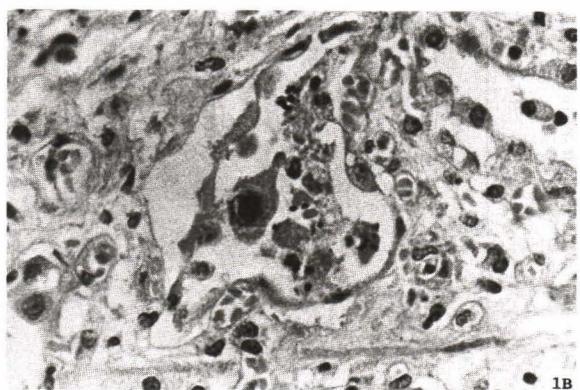
MATERIAL AND METHOD

Records of 847 autopsies from 1987 to 1994, and 116 post mortem needle biopsies from 1991 - 1994 on infants and children were reviewed for evidence of adenovirus and HIV infections.

Cases with clinical diagnosis and/or pathologic diagnosis of extensive pneumonia and pathologic diagnosis suspicious of adenovirus infection, based on characteristic histopathological findings on routine light microscopic examination were selected and reviewed.


Routine H & E slides from those selected were reviewed. Additional slides were cut when necessary. For identification of adenovirus, all available paraffin-embedded-tissue of suspicious cases were processed and examined under a transmission electron microscope.

Histochemistry stains for acid - fast - bacilli (Kinyoun's carbol fuchsin), fungi (Gomori's methenamine silver, Periodic - acid - Schiff stain, and Mayer's Mucicarmine stain) and Giemsa stain were performed on available tissues in searching for possible associated infections.


Exclusion of possible infections caused by cytomegalovirus, herpes simplex virus and *Pneumocystis carinii* were also made by immunohistochemistry study using paraffin - embedded - tissues, available in some cases.

Determination of anti - HIV using ELISA, gel particles agglutination (PA) test and western blot techniques, were performed only on some living patients suspicious of having HIV infection.

Surveillance for AIDS death in infants has been carried out at the Institute of Pathology since 1990. All available samples of heart blood obtained from infants at autopsy were determined for Anti - HIV using similar techniques.

Fig. 1A. Light microscopy of lung showing necrotizing bronchiolo-alveolitis with presence of smudge nuclei and intranuclear inclusions within the pneumocytes. H&E x 132 (Case 1).

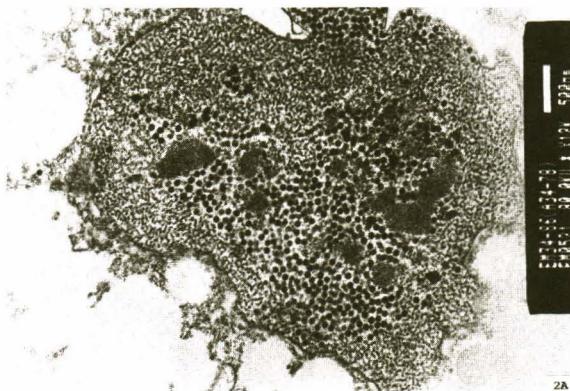

Fig. 1B. Prominent Cowdry type A intranuclear inclusion within the pneumocytes. H&E x 132 (Case 1).

Table 1. Summary of clinical informations on HIV positive infants with fatal adenovirus infection.

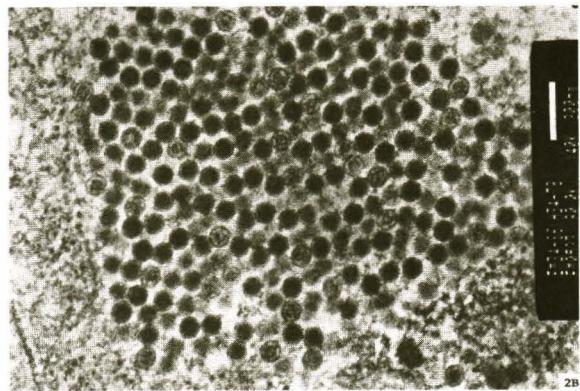
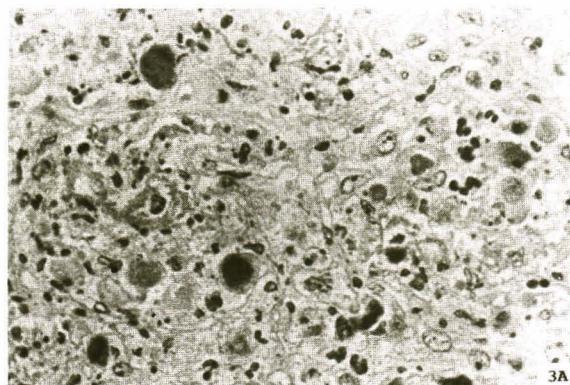

Clinical data	Case 1	Case 2	Case 3
Age/Sex	4m/F	8m/M	5m/M
Body weight	4.5 Kg.	5.7 Kg.	4 Kg.
Month/Year	August 1991	April 1992	October 1994
Clinical presentation			
-Symptoms	Chronic cough and fever	Chronic cough followed by fever	Recurrent cough and fever
-Signs	-Progressive dyspnea -Hepatosplenomegaly	-Progressive dyspnea -Hepatosplenomegaly	-Failure to thrive -Dyspnea -Hepatosplenomegaly
Chest x-rays	Extensive alveolar infiltration of lungs	Diffused alveolar infiltration of lungs	Progressive infiltration of both lungs, (mixed interstitial and alveolar)
Clinical diagnosis	Pneumonia and ARDS	-Massive pneumonia with ARDS -Hepatosplenomegaly	-Pediatric AIDS -Progressive pneumonia -Hepatosplenomegaly
Hospital stay	24 days	29 days	22 days
Anti HIV test	Positive (ELISA and PA) (heart blood)	Positive (ELISA and PA)	Positive on admission (ELISA and PA)
Familial history of HIV infection	Not available	Not available	Available (positive) just prior to hospitalization
Remarks	SGOT/SGPT 56/42	SGOT/SGPT 41/15 on early admission	-Mother positive for Anti HIV -No liver function test available

Table 2. Summary of pathological examination and findings on presumably HIV-positive infants.


Case No.	Type of pathological examination	Pertinent post mortem findings	Immunohistochemistry (Immunoperoxidase)	Electron microscopy	Remarks
1.	Full autopsy	1. Diffuse necrotizing bronchio alveolitis, with presence of intranuclear inclusions and smudge nuclei in all lobes of lungs (Fig. 1A,B) 2. <i>Pneumocystis carinii</i> pneumonia RLL 3. Severe fatty change of liver	-Negative for CMV -Positive for <i>Pneumocystis carinii</i>	-Demonstration of round to polygonal virions, of approximately 70 mm. in diameter arranged in crystalline arrays characteristic of adenovirus, in pneumocytes and bronchiolar lining cells (Fig. 2 A,B)	No virus culture
2	Needle biopsy of lung and liver	1. Lung : Necrotizing bronchioalveolitis with presence of intranuclear inclusions and smudge nuclei (Fig. 3A,B) 2. Liver : Presence of intranuclear inclusions and smudge nuclei -severe fatty change	-Negative for CMV.	-Demonstration of characteristic adenovirus as in case 1 (Fig. 4) -Demonstration of characteristic adenovirus in hepatocytes (Fig. 6)	No virus culture
3	Needle biopsy of lung and liver	1. Lung - unsuccessful biopsy (no lung tissue) 2. Liver - Multiple foci of coagulative necrosis of hepatocytes, with presence of intranuclear inclusions and smudge nuclei in surrounding hepatocytes.	-not performed (limited biopsy tissue)	-Demonstration of hexagonal virions, of 70 mm. in diameter, in crystalline arrays characteristic of adenovirus, in hepatocytes. (Fig. 8)	No virus culture

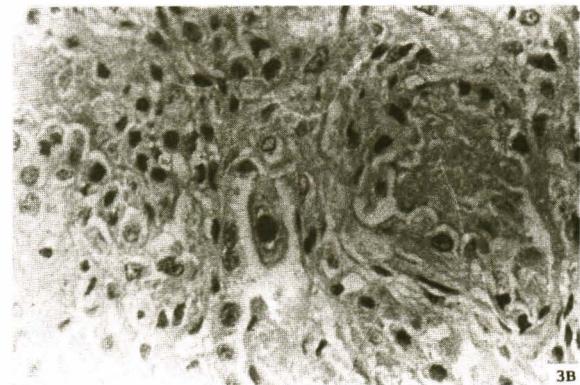

Fig. 2A. Electron micrograph of lung demonstrating intranuclear viral particles within the pneumocytes. X 12,000 (Case 1).

Fig. 2B. Higher magnification of 2A demonstrating viral particles, around 70 nm in diameter, in crystalline arrays. X 40,000 (Case 1).

Fig. 3A. Light microscopy of lung biopsy showing extensive bronchiolo-alveolitis, and scattered cells with smudge nuclei. H&E x 132 (Case 2).

Fig. 3B. Light microscopy of lung biopsy demonstrating Cowdry type A intranuclear inclusion within the pneumocytes. H&E x 132 (Case 2).

RESULTS

Among the 15 infants and young children who had fatal adenovirus infection, there were 3 infants who probably had evidence of HIV infection.

The clinical information and pathological findings of all 3 infants are summarized in Tables 1 and 2, respectively.

The characteristic light microscopic findings of adenovirus pneumonia originally described by Goodpasture(19) are shown in Figures 1 and 3.

The characteristic intranuclear inclusions and smudge nuclei in hepatocytes are demonstrated in Figures 5 and 7.

The characteristic adenovirus particles of 60-70 nm in diameter arranged in crystalline arrays(20,21) are shown in electron micrographs, Figures 2, 4, 6 and 8.

DISCUSSION

Opportunistic viral infections in persons with HIV infection have been well described(22-37).

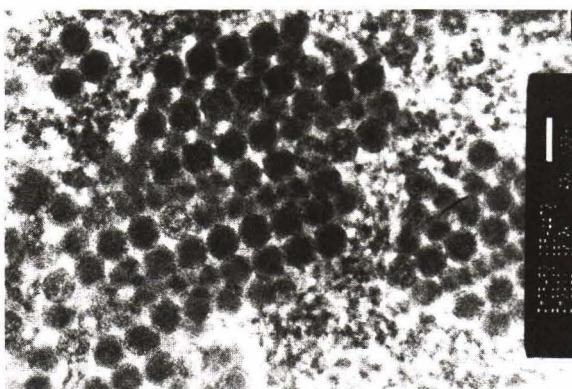


Fig. 4. Electron micrograph of lung biopsy demonstrating hexagonal viral particles, approximately 70 nm in diameter. X 60,000 (Case 2).

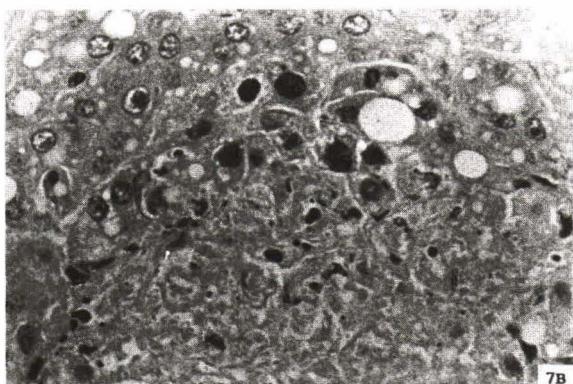
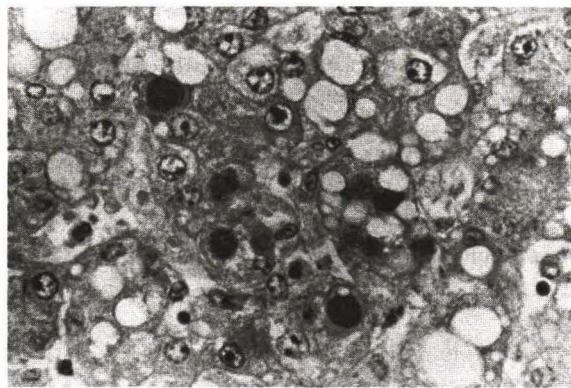



Fig. 7A, B. Light microscopy of liver biopsy showing Cowdry type A intranuclear inclusion, and smudge nuclei, bordering liver necrosis. H&E x 132 (Case 3).

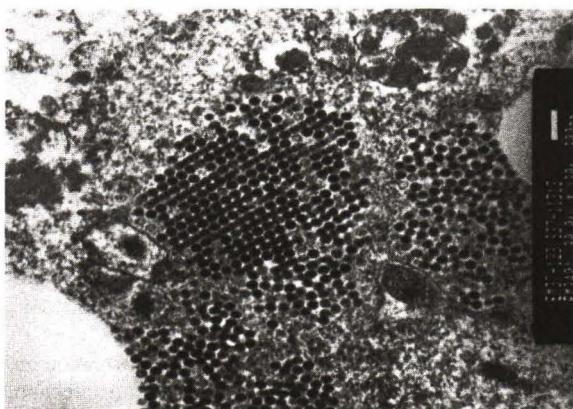
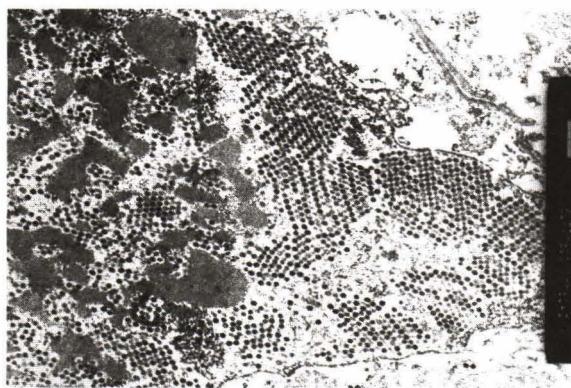



Fig. 6. Electron micrograph of hepatocyte showing intranuclear viral particles in crystalline arrays. X 10,000 (Case 2).

Fig. 8. Electron micrograph of liver biopsy showing numerous viral particles, 70 nm in diameter, in crystalline arrays. X 20,000 (Case 3).

Reports of morbidity or mortality caused by adenovirus among this patient population are uncommon despite the frequent isolation of adenoviruses from patients with HIV infection(15,16).

Some HIV - infected adult patients with diarrhea have adenovirus colonic infection(38-40). Adenovirus infection of the duodenal mucosa has been described as a cause of intractable diarrhea in a middle aged woman with terminal acquired immunodeficiency syndrome (AIDS)(41). There are a few reports describing the pathological features of necrotizing adenovirus infection of the renal tubules in adult AIDS at terminal stage(42,43).

Although adenovirus is a common cause of pediatric respiratory illness, it has been rarely associated with major morbidity or mortality in HIV- infected children. Only a few children with HIV infection have been described as having disseminated and fatal adenovirus infection with striking extensive hepatic necrosis(6,44).

All of the three present cases had clinical evidence of extensive pneumonia, two of them (Case 1 and Case 2) were confirmed by pathologic findings as having disseminated adenovirus pneumonia. Case 1 also had *Pneumocystis carinii* infection which is a common opportunistic infec-

tion, in the right lower lobe. In Case 2, adenovirus was demonstrated in both lungs and liver.

Because the autopsy was restricted to needle biopsy, lung involvement and the extent of dissemination could not be fully defined in Case 3. The liver involvement with hepatic necrosis in Case 3 was most likely caused by viral dissemination or overwhelming infection, since adenovirus seems to have a predilection for hepatocytes in patients with some forms of immunodeficiency and disseminated adenovirus infection(6,10,44).

With the high prevalence of adenovirus infection in humans and increasing numbers of HIV infection among children via vertical transmission, it is likely that cases of disseminated and fatal adenovirus infection will continue to be seen in young children. It seems not overemphasized to call for attention in terms of early diagnosis and effective therapy for this serious opportunistic infection which has been proved to be rapidly fatal in severely immunosuppressed patients.

ACKNOWLEDGEMENT

The author wishes to thank Mr. Chaiyong Arunsuriyasak for assistance in performing electron microscopy preparation and photography.

(Received for publication on August 18, 1997)

REFERENCES

1. Brandt CD, Kim HW, Vargasdo AJ, et al. Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to serologic type and illness syndrome. Am J Epidemiol, 1969; 90: 484-500.
2. Spencer MJ, Cherry JD. Adenovirus infection. In: Feigin R.D, Cherry JD, eds. Textbook of pediatric infectious diseases. Philadelphia: WB Saunders Co, 1981: 1279-98.
3. Landry ML, Fong CKY, Nedderman K, Solomon L, Hsiung GD. Disseminated adenovirus infection in an immunocompromised host. Am J Med. 1987; 83: 555-9.
4. Dagan R, Schwartz RH, Insel RA, Menegus MA. Severe diffused adenovirus 7a pneumonia in a child with combined immunodeficiency: possible therapeutic effect of human serum globulin containing a specific neutralizing antibody. Pediatr Infect Dis 1984; 3: 346-51.
5. Zahradnik JM, Spencer MJ, Porter DD. Adenovirus in the immunocompromised patient. Am J Med 1980; 68: 725-32.
6. Krilov LR, Rubin LG, Frogel M, et al. Disseminated adenovirus infection with hepatic necrosis in patients with human immunodeficiency states. Rev Infect Dis 1990; 12: 303-7.
7. Wigger HJ, Blanc WA. Fatal hepatic and bronchial necrosis in adenovirus infection with thymic alymphoplasia. N Engl J Med 1964; 275: 870-4.
8. Aterman K, Embil J, Easterbrook KB, Grosby J. Liver necrosis, adenovirus type 2 and thymic dysplasia. Virchows Arch [A] 1973; 360: 155-71.
9. Rodriguez FH Jr, Liuzza GE, Gohd RH. Disseminated adenovirus serotype 31 infection in an immunocompromised host. Am J Clin Pathol

1984; 82: 615-8.

10. South MA, Dolen J, Beach DK, Mirkovic RR. Fatal adenovirus hepatic necrosis in severe combined immunodeficiency. *Pediatr Infect Dis* 1982; 64: 83-7.

11. Carmichael GP Jr, Zahradnik J, Moyer GH, Porter DD. Adenovirus hepatitis in an immunocompromised adult patient. *Am J Clin Pathol* 1979; 71: 352-5.

12. Shields AF, Hackman RC, Fife KH, Corey L, Meyers JD. Adenovirus infection in patients undergoing bone marrow transplantation. *N Engl J Med* 1985; 312: 529-33.

13. Purtito DT, White R, Filipovich A, Kersey J, Zelkowitz L. Fulminant failure induced by adenovirus after bone marrow transplantation. *N Engl J Med* 1985; 312: 1707-8.

14. Korner B, Jaffe R, Esquivel CO, et al. Adenoviral infection in pediatric liver transplant recipients. *JAMA* 1987; 258: 489-92.

15. de Jong P, Valderrama G, Spigland I, Horwitz M. Adenovirus isolated from urine of patients with acquired immunodeficiency syndrome. *Lancet* 1983; 1: 1293-6.

16. Heirholzer JC, Wigand R, Anderson LJ, Adrain LJ, Gold JW. Adenoviruses from patients with AIDS: a plethora of serotypes and a description of five new serotypes of subgenus D (types 43-47). *Infect Dis* 1988; 158: 804-13.

17. Tantivanich S, Chityothin O, Taravanij S. Infection rates of respiratory syncytial virus in pediatric patients attending Phra Mongkutlao Hospital, Bangkok. *Southeast Asian J Trop Med Pub Hlth* 1984; 15: 63-7.

18. Chaivasu C, Vasdinanda S, Hunnivat Y. Respiratory syncytial virus among Thai population in Bangkok. *Medical Sciences News* 1975; 1: 13.

19. Goodpasture EW, Auerbach SH, Swanson HS, Cotter EF. Virus pneumonia of infants secondary to epidemic infections. *Am J Dis Child* 1939; 57: 997-1011.

20. Yunis EJ, Agostini RM, Atchison RW. An atlas of viral particles from human specimens. *Perspect Pediatr Pathol* 1978; 4: 387-429.

21. Ghadially FN. Intranuclear viral inclusions and virus - like particles. In : Ghadially FN, ed. *Ultrastructural pathology of the cell and matrix*. 3rd ed., Vol I, London : Butterworths, 1988 : 130-9.

22. Reichert CM, O'Leary TJ, Levens DL, Simrell CR, Macher AM. Autopsy pathology in the acquired immunodeficiency syndrome. *Am J Pathol* 1983; 112: 357-82.

23. Follansbee SE, Busch DF, Wofsy CB, et al. An outbreak of pneumocystis carinii pneumonia in homosexual men. *Ann Intern Med* 1982; 96: 705-13.

24. Green JB, Sidhu GS, Lewin S, et al. *Mycobacterium avium - intracellulare*. A cause of disseminated life - threatening infection in homosexuals and drug abusers. *Ann Intern Med* 1982; 97: 539-46.

25. Mildvan D, Mathur U, Enlow RW, et al. Opportunistic infections and immune deficiency in homosexual men. *Ann Intern Med* 1982; 96: 700-4.

26. Small CB, Klein RS, Friedland GH, Moll B, Emeson EE, Spigland I. Community - acquired opportunistic infections and defective cellular immunity in heterosexual drug abusers and homosexual men. *Am J Med* 1983; 74: 433-41.

27. Centers for Disease Control : *Cryptosporidiosis : Assessment of chemotherapy of males with acquired immunodeficiency syndrome (AIDS)*. *Morbid Mortal Weekly Rep* 1982; 31: 589-92.

28. Pitchenik AE, Fischl MA, Dickinson GM, et al. Opportunistic infections and Kaposi's sarcoma among Haitians. Evidence of a new acquired immunodeficiency state. *Ann Intern Med* 1983; 98: 277-84.

29. Poon MC, Landy A, Prasthofer EF, Stagno S. Acquired immunodeficiency syndrome with *Pneumocystis carinii* pneumonia and *Mycobacterium avium - intracellulare* infection in a previously healthy patient with classic hemophilia. *Ann Intern Med* 1983; 98: 287-90.

30. Offenstadt G, Pinta P, Hericord P, et al. Multiple opportunistic infection due to AIDS in a previously healthy black woman from Zaire. *N Engl J Med* 1983; 308: 775.

31. Drew WL, Conant MA, Miner RC, et al. Cytomegalovirus and Kaposi's sarcoma in young homosexual men. *Lancet* 1982; 2: 125-7.

32. Al' Khafaji K, Rotterdam H, Lerner CW, Tapper ML. Autopsy findings in six patients with acquired immunodeficiency syndrome (abstr). *Lab Invest* 1983; 48: 2A.

33. Bachman DM, Rodrigues MM, Chu FC, Straus SE, Cogan DG, Macher AM. Culture-proven CMV retinitis in a homosexual man with the acquired immunodeficiency syndrome. *Ophthalmology* 1982; 89: 797-804.

34. Friedman AH, Freeman WR, Orellana J, Kraushar MF, Starr MB, Luntz MH. Cytomegalovirus retinitis and immunodeficiency in homosexual males. *Lancet* 1982; 1: 958.

35. Sohn CC, Schröff RW, Kliewer KE, Lebel DH, Fligiel Z. Disseminated *mycobacterium avium - intracellulare* infection in homosexual men with acquired cell-mediated immunodeficiency : A histologic and immunologic study of two cases. *Am J Clin Pathol* 1983; 79: 247-52.

36. Pitchenik AE, Fischl AM. Disseminated tuber-

culosis and the acquired immunodeficiency syndrome. Ann Intern Med 1983; 98: 112.

37. Honig C, Soave R. Cryptosporidium in acquired immunodeficiency syndrome (abstr). Lab Invest 1983; 43: 36A.

38. Maddox A, Francis N, Moss J, Gazzard B. Adenovirus infection of the large bowel in HIV positive patients. J Clin Pathol 1992; 45: 684-8.

39. Guidi AJ, Unger ER, Hanff PA. DNA in situ hybridization (ISH) of non-enteric adenovirus (AV) in colon biopsies (BXS) from HIV + patients with diarrhea. Lab Invest 1993; 68: 46A.

40. Janoff EN, Orenstein JM, Manischewitz JF, Smith PD. Adenovirus colitis in the acquired immunodeficiency syndrome. Gastroenterology 1991; 100: 976-9.

41. Yi ES, Powel HC. Adenovirus infection of the duodenum in an AIDS patient: An ultrastructural study. Ultrastruc Pathol 1994; 18: 549-51.

42. Green WR, Greaves WL, Frederick WR, Tadesse-Heath L. Renal infection due to adenovirus in a patient with human immunodeficiency virus infection. Clin Infect Dis 1994; 18: 989-91.

43. Shintaku M, Nasu K, Ito M. Necrotizing tubulo-interstitial nephritis induced by adenovirus in an AIDS patient. Histopathology 1993; 23: 588-90.

44. Janner D, Petru AM, Belchis D, Azimi PH. Fatal adenovirus infection in a child with acquired immunodeficiency syndrome. Pediatr Infect Dis J 1990; 9: 434-6.

โรคติดเชื้ออuateในไวรัสที่รุนแรงถึงตายในเด็กที่สงสัยว่ามีการติดเชื้อ เอช ไอ วี

ดำรงค์ พันธุ์มุกคล, พ.บ.*

การติดเชื้อ อะดีโนไวรัส พบร้าบอยในเด็กเล็ก แต่ไม่รุนแรงถึงตาย ผู้ป่วยภูมิคุ้มกันบกพร่องจากสาเหตุอื่น ๆ อาจติดเชื้ออuateในไวรัสที่รุนแรงถึงตายได้ แต่รายงานที่กล่าวถึงพยาธิสภาพหรือการตายอันเกิดจากอะดีโนไวรัสในผู้ป่วยเด็ก ที่ไม่ได้มีน้อยมาก

ได้ศึกษาผู้ป่วยเด็กอายุต่ำกว่า 1 ขวบ จำนวน 3 ราย ที่สงสัยว่ามีการติดเชื้อ เอช ไอ วี และติดเชื้ออuateในไวรัส ร่วมด้วยจนถึงแกกรรมเนื่องจากปอดบวมอย่างรุนแรง ผลการตรวจศพและชิ้นเนื้อทางพยาธิวิทยา พนันคลุชันบอดตี ซึ่งมี ลักษณะเฉพาะของการติดเชื้ออuateในไวรัสในปอดและดับโดยกล้องจุลทรรศน์ปักติ ตรวจยืนยันโดยกล้องจุลทรรศน์อีกครั้ง พบไวรีอ่อน ซึ่งมีขนาดและลักษณะเฉพาะของอะดีโนไวรัสในชิ้นเนื้อผู้ป่วยทั้ง 3 ราย เป็นรายงานแรกที่มีการตีพิมพ์ในประเทศไทย

* สถาบันพยาธิวิทยา (ในบริเวณโรงพยาบาลราชวิถี) ราชเทวี กรุงเทพมหานคร 10400

† รายงานนี้ได้นำเสนอในการประชุมนานาชาติ เกี่ยวกับออดส์โนเรีย และแบคทีเรีย ครั้งที่ 3 จังหวัดเชียงใหม่ 18 กันยายน 2538