

# Etiologic Study of Primary Congenital Hypothyroidism

TOSSAPORN SEEHERUNVONG, M.D.\*,  
SUNCHAI CHURESIGAEW, M.D.\*

## Abstract

The underlying causes of 35 children with primary congenital hypothyroidism at the Children's Hospital were studied. There were 21 girls and 14 boys. Serum T<sub>4</sub> and TSH level, 24 hours <sup>131</sup>I uptake, and technetium-99m thyroid scintigraphy were performed after discontinuation of synthetic thyroid hormone for 4-6 weeks. Athyrosis was the most common cause and accounted for forty-three per cent of the patients. Twenty per cent of the patients had thyroid hypoplasia. Ectopic thyroid was found in thirty-three per cent of the patients. Only a patient whose diagnosis was organification defect had slightly enlarged thyroid gland, high retention of <sup>131</sup>I and positive perchlorate discharge test. Onset of symptoms before 9 months of age may be helpful for distinguishing between lingual thyroid and the others. Serum T<sub>4</sub> level less than 2 µg/dL was observed to be more common in athyrosis and lingual thyroid groups than thyroid hypoplasia group.

Congenital hypothyroidism is one of the most common causes of endocrine disorders in childhood. Neonatal screening programs for congenital hypothyroidism (CH) from various countries has shown an incidence of approximately between 1:3,800 to 1:5,000(1-5). In Thailand, its incidence from some studies is 1:1,792 to 1:3,900 (6,7). Primary CH may be due to an absent or hypoplastic gland, an ectopic gland, or an inborn error of thyroid hormone metabolism(8).

In this report, we used <sup>131</sup>I thyroidal uptake and technetium-99m thyroid scintigraphy in determining the cause of CH. In addition, we determined which clinical or laboratory data is helpful for distinguishing the different causes of hypothyroidism.

## MATERIAL AND METHOD

Thirty-five cases of CH were studied. They were 14 males and 21 females. Their mean age at

\* Division of Endocrinology and Metabolism, Department of Medical Services, Children's Hospital, Bangkok 10400, Thailand.

the time of recall was 8.4 years (range 2 to 22 years). Their clinical and laboratory data were retrospectively analyzed. All patients had typical myxedema, low serum  $T_4$ , retarded skeletal age, and decreased 24 hours  $^{131}\text{I}$  uptake. They had been on synthetic thyroid hormone until 4-6 weeks prior to the study. Determination of serum  $T_4$ , serum TSH,  $^{131}\text{I}$  uptake at 24 hours and technetium-99m scanning of the thyroid gland were then performed on all children. Grouping was based primarily on the result of scintiscanning of the thyroid gland. The findings were then correlated with the clinical and laboratory data.

## RESULTS

Most cases (71%) lived in the central part of Thailand. None had a history of hypothyroidism in other siblings or relatives. All mothers were healthy and denied taking any antithyroid drugs, radioactive iodine during the pregnancy.

The result of etiologic study of CH is shown in Table 1. Athyrosis was found in 15 patients (42.9%). They had 24 hours  $^{131}\text{I}$  uptake between 0-9 per cent and negative thyroid scintiscanning. In 7 patients (20.0%) with thyroid hypoplasia, three had normal size of thyroid, and four had small thyroid glands. Their  $^{131}\text{I}$  uptake at 24 hours varied between 0 to 20 per cent. Twelve patients (34.3%) had lingual thyroid and had 24 hours  $^{131}\text{I}$  uptake between 0-9 per cent. The only patient who was suspected of organification defect had a slightly enlarged thyroid gland, her 3 hours and 24 hours  $^{131}\text{I}$  uptake were 22.17 per cent and 8.27 per cent respectively. Perchlorate discharge test was positive. However, there was no family history of thyroid disease in this patient.

Table 2 shows comparison of age at onset between the 3 groups. No patient in the lingual thyroid group was diagnosed before 9 months of age. In athyrosis and thyroid hypoplasia groups, most of them were diagnosed before 9 months of age.

Table 3 shows comparison of clinical data at onset between the 3 groups. Most of them were females. About eighty per cent of lingual thyroid group presented with delayed development and failure to thrive. Symptoms that were found only in athyrosis and thyroid hypoplasia groups included hoarse voice, and lethargy whereas prolonged jaundice was found only in the athyrosis group. No clinical data were significantly different between these groups ( $P>0.05$ ). One child with organifica-

Table 1. Grouping of the patients according to the result of 24 hours  $^{131}\text{I}$  uptake and  $^{99}\text{mTc}$  scanning of thyroid gland.

| Group                    | No.(%)   | % 24 hours $^{131}\text{I}$ uptake<br>(normal 20-50) |               |               | Thyroid scintiscanning |                    |                 |                  |
|--------------------------|----------|------------------------------------------------------|---------------|---------------|------------------------|--------------------|-----------------|------------------|
|                          |          | 0-3<br>No.(%)                                        | 3-6<br>No.(%) | 6-9<br>No.(%) | 18-20<br>No.(%)        | negative<br>No.(%) | small<br>No.(%) | normal<br>No.(%) |
| 1. Athyrosis             | 15(42.9) | 12(80.0)                                             | 1(6.7)        | 2(13.3)       | 15(100)                | -                  | -               | -                |
| 2. Thyroid hypoplasia    | 7(20.0)  | 4(57.1)                                              | 1(14.3)       | 2(28.6)       | -                      | 4(57.1)            | -               | 3(42.9)          |
| 3. Lingual thyroid       | 12(34.3) | 4(33.3)                                              | 6(50.0)       | 2(16.7)       | -                      | -                  | -               | -                |
| 4. Organification defect | 1(2.9)   | -                                                    | -             | -             | -                      | -                  | -               | 1                |

Table 2. Comparison of age onset between 3 groups of cretins.

| Age at onset<br>(month) | No. (%)   |                    |                 |
|-------------------------|-----------|--------------------|-----------------|
|                         | Athyrosis | Thyroid hypoplasia | Lingual thyroid |
| 0- <3                   | 6 (40.0)  | 3 (42.9)           | -               |
| 3- <6                   | 2 (13.3)  | 1 (14.3)           | -               |
| 6- <9                   | 1 (6.7)   | 3 (42.9)           | -               |
| 9- <12                  | 2 (13.3)  | -                  | 3 (25.0)        |
| >12                     | 4 (26.7)  | -                  | 9 (75.0)        |
| Total                   | 15        | 7                  | 12              |

Table 3. Comparison of clinical data at onset between 3 groups of cretins.

| Clinical data       | No. (%)                |                                   |                                 | P value |      |      |
|---------------------|------------------------|-----------------------------------|---------------------------------|---------|------|------|
|                     | Athyrosis(a)<br>(n=15) | Thyroid(b)<br>hypoplasia<br>(n=7) | Lingual(c)<br>thyroid<br>(n=12) | (a)     | (a)  | (b)  |
|                     |                        |                                   |                                 | VS      | VS   | VS   |
| Female              | 8 (53.3)               | 3 (42.9)                          | 9 (75.0)                        | 1.00    | 0.42 | 0.32 |
| Constipation        | 8 (53.3)               | 2 (28.6)                          | 5 (41.7)                        | 0.38    | 0.55 | 0.65 |
| Delayed development | 9 (60.0)               | 6 (85.7)                          | 10 (83.3)                       | 0.35    | 0.23 | 1.00 |
| Failure to thrive   | 7 (46.7)               | 3 (42.9)                          | 10 (83.3)                       | 1.00    | 0.11 | 0.12 |
| Distended abdomen   | 4 (26.7)               | 1 (14.3)                          | 3 (25.0)                        | 1.00    | 1.00 | 1.00 |
| Dry skin            | 1 (6.7)                | 1 (14.3)                          | 1 (8.3)                         | 1.00    | 1.00 | 1.00 |
| Hoarse voice        | 2 (13.3)               | 3 (42.9)                          | -                               | 0.27    |      |      |
| Lethargy            | 2 (13.3)               | 1 (14.3)                          | -                               | 1.00    |      |      |
| Umbilical hernia    | 1 (6.7)                | -                                 | 2 (16.7)                        |         | 0.57 |      |
| Prolonged jaundice  | 4 (26.7)               | -                                 | -                               |         |      |      |
| Pale                | 1 (6.7)                | -                                 | -                               |         |      |      |

Table 4. Comparison of laboratory data after discontinuation of synthetic thyroid hormone between 3 groups of cretins.

| Clinical data    | No. (%)      |                          |                       | P value |      |      |
|------------------|--------------|--------------------------|-----------------------|---------|------|------|
|                  | Athyrosis(a) | Thyroid(b)<br>hypoplasia | Lingual(c)<br>thyroid | (a)     | (a)  | (b)  |
|                  |              |                          |                       | VS      | VS   | VS   |
| T4 <2            | 12/13 (92.3) | 3/7 (42.9)               | 11/12 (91.7)          | 0.03    | 1.00 | 0.04 |
| TSH >50          | 11/14 (78.6) | 2/7 (28.6)               | 10/12 (83.3)          | 0.06    | 1.00 | 0.04 |
| Delayed bone age | 3/15 (20.0)  | 1/6 (16.7)               | 3/12 (25.0)           | 1.00    | 1.00 | 1.00 |

tion defect presented with seizure, jaundice, and typical myxedema but no other significant symptoms.

The laboratory data after discontinuation of synthetic thyroid hormone was compared between 3 groups (Table 4). A greater proportion of children with athyrosis and lingual thyroid had serum T<sub>4</sub>

level less than 2  $\mu$ g/dl when compared with those with thyroid hypoplasia ( $P<0.05$ ). In addition, groups of children with athyrosis and lingual thyroid also had a higher serum TSH level than those with thyroid hypoplasia. The number of patients with delayed skeletal age was not different between the groups ( $P>0.05$ ).

## DISCUSSION

We found a significant number of patients with lingual thyroid in this study which was different from the study of Churesigaew S(9) which reported no case with ectopic thyroid gland. This might be the result of scintiscanning technique. In this study, we used technetium-99m scanning of thyroid gland instead of  $^{131}\text{I}$  scanning because the former technique was considered to be superior than the latter by many authors(10-12). In addition, technetium-99m is useful in evaluating the anatomy of a gland in patient who may have a low iodine uptake. In this study, we could demonstrate the ectopic thyroid as one of the common causes of primary CH which agreed with other studies(5,8).

As in other series(5,8,13-16), the primary CH was more common in girls than in boys, though the lingual thyroid group in this study was not. In various studies, between 37 and 57 per cent of the diagnosis of hypothyroidism due to ectopic thyroid tissue were made within the first year of life, and retardation of growth and development were common presentations. Depending upon the amount of thyroid hormone produced, the signs and symptoms of hypothyroidism may be masked causing delayed diagnosis(17). Comparing this study with the others, our cases with lingual thyroid gland were diagnosed after late infancy period. There were only 25 per cent of our patients with lingual thyroid gland who were diagnosed before 12 months of age. Most of them were presented with failure to thrive and delayed development. Hoarse voice, lethargy and prolonged jaundice were found only in athyrosis and thyroid hypoplasia groups. In our opinion, the age at presentation might be helpful for differen-

tiating the lingual thyroid group from the others groups. However, other factors were not helpful for distinguishing the different etiologies of primary CH.

Some laboratory data after discontinuation of synthetic thyroid hormone including serum  $\text{T}_4$  and TSH levels were different between these groups. Since serum  $\text{T}_4$  level less than 2  $\mu\text{g}/\text{dl}$  was found in the majority of athyrosis and lingual thyroid groups compared to the thyroid hypoplasia group, it might reflect the wide range of thyroid function in the thyroid hypoplasia group.

In organification defect of thyroid hormone synthesis, the patients usually had goiter and most of them had a family history of this defect(18). Due to the high risk of recurrent rate in the siblings, counseling to their parents is very important.

## SUMMARY

We studied the underlying causes of 35 cases with primary congenital hypothyroidism. There were 21 girls and 14 boys with age at time of recall of 2 to 22 years. The technetium-99m thyroid scintigraphy had shown that most of them had athyrosis (42.9%) followed by lingual thyroid which accounted for 34.3 per cent of these patients. Thyroid hypoplasia was found in 20.0 per cent of cases. One case whose diagnosis was organification defect had a slightly enlarged thyroid gland, high retention of  $^{131}\text{I}$ , and positive perchlorate discharge test. Onset of symptoms before 9 months of age may be helpful for distinguishing between lingual thyroid and the others. Serum  $\text{T}_4$  less than 2  $\mu\text{g}/\text{dL}$  was observed to be more common in athyrosis and lingual thyroid groups than in the thyroid hypoplasia group.

(Received for publication on January 17, 1997)

## REFERENCES

1. Griffiths KD, Virdi NK, Rayner PH, et al. Neonatal screening for congenital hypothyroidism by measurement of plasma thyroxine and thyroid stimulating hormone concentrations. *Br Med J* 1985; 291: 117-20.
2. Illig R, Largo RH. European collaborative study on mental development in children with congenital hypothyroidism (CH) diagnosed by neonatal screening. *Pediatr Res* 1985; 19: 615.
3. Klein RZ. Infantile hypothyroidism then and now : the results of neonatal screening. *Curr Prob Pediatr* 1985; 15: 1-58.
4. Larsson A, Ljunggren JG, Ekman K, et al. Screening for congenital hypothyroidism II : clinical findings in infants with positive screening test. *Acta Pediatr Scand* 1981; 70: 147-53.
5. Fisher DA, Dussault JH, Foley TP, et al. Screening for congenital hypothyroidism : results of screen-

ing one million North American infants. *J Pediatr* 1979; 94: 700-5.

6. Sukthomya V, Sukthomya C, Silaparasamee S, et al. Neonatal screening for hypothyroidism in Southern Thailand. *The Thai Journal of Radiology* 1986; 23: 73-9.

7. Charoensiriwatana W. The pilot activities for neonatal screening in Thailand. *Health Science Research Institute, Department of Medical Sciences*.

8. New England congenital hypothyroidism collaborative. Characteristics of infantile hypothyroidism discovered on neonatal screening. *J Pediatr* 1984; 104: 539-44.

9. Churesigaew S. Congenital hypothyroidism: study of etiological aspect. *J Med Assoc Thai* 1983; 66: 10-3.

10. Wilson GA. Uptake test, thyroid and whole body imaging with isotopes. In Falk S, eds. *Thyroid disease: endocrinology, surgery, nuclear medicine and radiotherapy*. New York, Raven Press, 1990: 59-78.

11. Cavalieri RR. In vivo isotopic tests and imaging. In Braverman LE, Utiger RD, eds. *Werner and INGBAR's the thyroid: a fundamental and clinical text*, 6th edition. Philadelphia, J.B. Lippincott company 1991: 437-62.

12. Foley TP Jr. Congenital hypothyroidism and screening. In Monaco F, Satta MA, Shapiro B, et al, eds. *Thyroid diseases: clinical fundamental and therapy*. Ann Arbor, CRC Press, Inc., 1993: 121-9.

13. Delange F, Illig R, Rocchiccioli P, et al. Progress report 1980 on neonatal thyroid screening in Europe. *Acta Pediatr Scand* 1981; 70: 1-2.

14. Kaplan M, Kauli R, Lubin E, et al. Ectopic thyroid gland: a clinical study of 30 children and review. *J Pediatr* 1978; 92: 205-9.

15. Heyman S, Crigler JF, Treves S. Congenital hypothyroidism:  $^{123}\text{I}$  thyroidal uptake and scintigraphy. *J Pediatr* 1982; 101: 571-4.

16. Wells RG, Sty JR, Duck SC.  $^{99}\text{m}$  pertechnetate thyroid scintigraphy: congenital hypothyroid screening. *Pediatr Radiol* 1986; 16: 368-73.

17. Myer CM, III, Cotton RT. Congenital thyroid cysts and ectopic thyroid. In Falk S, eds. *Thyroid disease: endocrinology, surgery, nuclear medicine and radiotherapy*. New York, Raven Press, 1990: 381-8.

18. Lever EG, Medeiros-Neto GA, DeGroot LJ. Inherited disorders of thyroid metabolism. *Endocr Rev* 1983; 4: 213-39.

## การศึกษาสาเหตุในผู้ป่วยที่ขาดอัลตราอยด์หรือโรมนแต่กำเนิดชนิดปฐมภูมิ

ทศพร สีทธิรัชวงศ์ พ.บ.\*, ลัญชัย เชื้อสีห์แก้ว พ.บ.\*

ได้ศึกษาถึงสาเหตุของภาวะขาดอัลตราอยด์หรือโรมนแต่กำเนิดชนิดปฐมภูมิที่โรงพยาบาลเด็กจำนวน 35 ราย เป็นเพศหญิง 21 ราย เพศชาย 14 ราย อายุตั้งแต่ 2.2 ถึง 22 ปี โดยหดหายอัลตราอยด์ที่ใช้รักษาผู้ป่วยเหล่านี้เป็นเวลากว่า 4 ถึง 6 สัปดาห์ แล้วตัวจะระดับ serum  $\text{T}_4$ , TSH, skeletal age, วัดระดับ  $^{131}\text{I}$  uptake ที่ 24 ชั่วโมง และทำ technetium-99m scanning of thyroid gland

พบว่าผู้ป่วยทุกรายมีระดับ serum  $\text{T}_4$  ต่ำและ TSH สูง ส่วนใหญ่ skeletal age ปกติ จาก thyroid scan พบผู้ป่วยที่ไม่มีต่อมอัลตราอยด์เลย์มากกที่สุด (ร้อยละ 42.9) โดยมีระดับ  $^{131}\text{I}$  uptake ร้อยละ 0-9 ผู้ป่วยที่มีต่อมอัลตราอยด์เล็กกว่าปกติ (ร้อยละ 20) มีค่า  $^{131}\text{I}$  uptake ร้อยละ 0-20 พบผู้ป่วยมีต่อมอัลตราอยด์อยู่ผิดที่ร้อยละ 34.3 โดยมีค่า  $^{131}\text{I}$  uptake ร้อยละ 0-9 ผู้ป่วย 1 รายมีความผิดปกติของอินซัมท์ที่ใช้ในการสังเคราะห์อัลตราอยด์หรือโรมน โดยมีต่อมอัลตราอยด์ได้และมี  $^{131}\text{I}$  ค้างอยู่ในต่อมมากกว่าปกติ และ การทดสอบ perchlorate discharge test ให้ผลบวก ประวัติอายุของผู้ป่วยเมื่อเริ่มแสดงอาการขาดอัลตราอยด์หรือโรมนอาจช่วยแยกกลุ่มได้ โดยถ้าผู้ป่วยเริ่มแสดงอาการก่อนอายุ 9 เดือน มากไม่ใช่ต่อมอัลตราอยด์ผิดที่ ระดับ serum  $\text{T}_4$  ต่ำกว่า 2  $\mu\text{g}/\text{dl}$  พบในกลุ่มไม่มีต่อมอัลตราอยด์และต่อมอัลตราอยด์อยู่ผิดที่ได้บ่อยกว่ากลุ่มต่อมอัลตราอยด์มีขนาดเล็กกว่าปกติอย่างมีนัยสำคัญทางสถิติ

\* หน่วยต่อมไร้ท่อ, โรงพยาบาลเด็ก, กรมการแพทย์, กรุงเทพฯ 10400