

# Frontal Ventriculoperitoneal Shunt : Technical Note

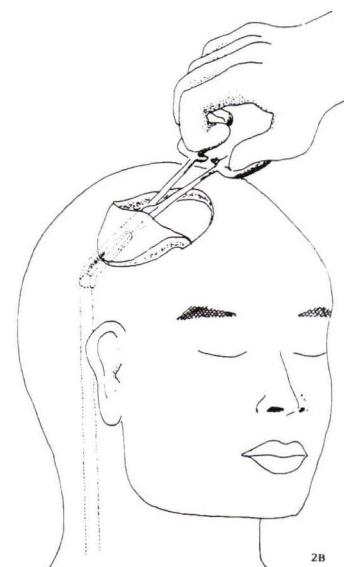
SANGUANSIN RATANALERT, M.D.\*

## Abstract

Cerebrospinal fluid shunt placement is one of the most commonly performed procedures in neurological surgery. The author describes a technique to avoid an additional skin incision in the frontal ventriculoperitoneal shunt procedure without the purchase of new instruments or prolongation of surgical time.

**Key word :** Ventriculoperitoneal Shunt, Frontal Burr Hole

Shunt placement is one of the most common procedures performed in neurosurgery. The aim of shunting is to establish a communication between the cerebrospinal fluid and a drainage cavity. Ventriculoperitoneal (VP) shunt has become the standard method for management of hydrocephalus worldwide<sup>(1)</sup>. However, despite a long history since the first introduction in 1908 and its apparent simplicity, the use of shunts continues to be fraught with multiple complications<sup>(2-4)</sup>. A surgical technique that may minimize the likelihood of complications without the purchase of new instruments or prolongation of surgical time may be of value.



## Surgical technique

The operation is performed under general anaesthesia with the patient supine and the neck

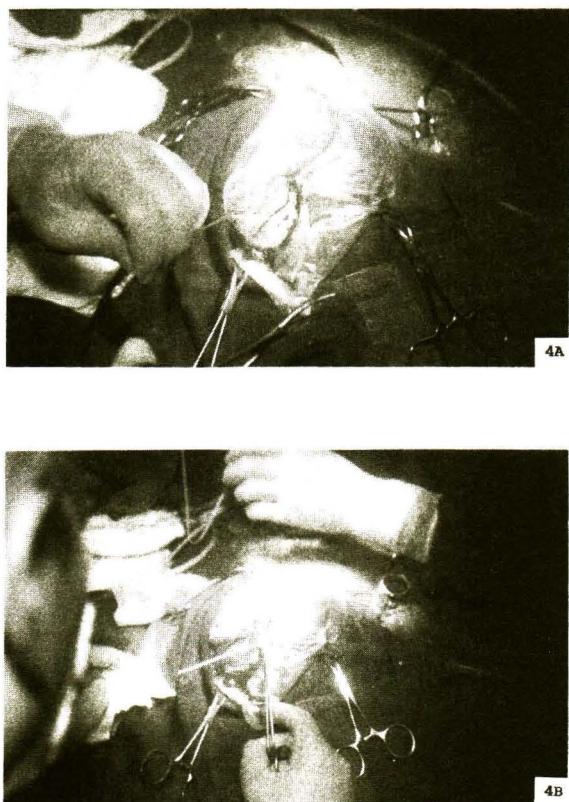
hyperextended with a shoulder roll. Unless the left lateral ventricle is markedly more dilated than the right, the right ventricle is chosen and the patient's head is turned to the left. It is important that the line joining the parietal prominence and the abdominal incision is linear. This will accommodate the safe passage of the shunt catheter between them.

The skin is prepped with an antiseptic solution, the incisions are marked and a narrow, continuous field is draped from the burr hole site to the right subcostal region. The curved incision for the frontal burr hole is made, keeping the distance between the burr hole site and incision at about 2 cm. Malleable catheter passer (Codman & Shurtleff, Inc.) is passed subcutaneously from a small abdominal incision; subcostal incision is preferred, directly to the parietal area. (Fig. 1) The curved

\* Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.



**Fig. 1.** (1A, 1B) Malleable Catheter Passer was passed through the abdominal incision until the tip reached the parietal region.


**Fig. 2.** (2A, 2B) Forceps was subgaleally tunneled to hold the Passer's tip.

hemostatic forceps are subgaleally tunneled from the scalp incision to hold the tip of the passer. (Fig. 2) Meanwhile, a peritoneal catheter is connected to the end of the passer's stylet by an assistant surgeon. A tightening of the connection with silk 3-0 is suggested. When the forceps pull the tip of the passer the peritoneal catheter will follow (Fig. 3, 4). Therefore, no additional incision is needed for ventriculoperitoneal shunt at the frontal burr hole.

The peritoneal catheter is connected to the reservoir and ventricular catheter. After insertion of the catheters in the proper position, ventricle and peritoneal cavity, the skin incisions are closed by layers.



**Fig. 3.** The tip was pulled by forceps until reaching the scalp wound.



**Fig. 4.** (4A, 4B) After connecting the peritoneal catheter to the stylet of the Passer, the stylet was pulled until the peritoneal catheter was seen at the scalp wound.

## DISCUSSION

There is general agreement that it is technically advantageous to place the ventricular catheter anterior to the foramen of Monro to avoid proximal catheter obstruction by choroid plexus<sup>(5)</sup>. Two

approaches are acceptable and the choice between frontal or parietooccipital burr hole sites is based on individual preference<sup>(4-6)</sup>. The frontal approach has an advantage in that the pass is a shorter distance through the brain and does not traverse the eloquent area of the brain. Albright et al demonstrated a better survival for frontal shunts: At 5 years an estimated 55 per cent of frontal shunts continued to function compared to only 33 per cent of parietal shunts<sup>(7)</sup>. One shortcoming of the frontal approach is that there is a long distance between the frontal and abdominal incisions, an additional incision is needed in passing the peritoneal catheter to the burr hole site<sup>(6,8,9)</sup>. Malleable catheter passer is very helpful in making a subcutaneous tunnel from the abdomen to the scalp, usually reaching the parietal region. For further advancement to the frontal region, changing direction by this rigid catheter passer is not possible. Formerly, a scalp incision had to be done at this point which may increase the infection risk by exposing the shunt to bacteria residing within the skin appendage<sup>(10,11)</sup>. By this new technique, the tip of the passer is able to pass through the subgaleal space to the frontal burr hole site.

Care should be taken at the level of the neck to avoid vascular injuries and skull perforation (especially in an infant's skull). In reducing the risks of skin perforation, the track of the shunt passer must never become too superficial.

Forceps that hold the tip of the passer is also important. In children, non-tooth curved hemostatic forceps can be properly used, but in adults, another long curved forceps is needed. The author found the Rochester - Pean hemostatic forceps (185 mm length) suitable for most adult cases.

## ACKNOWLEDGEMENT

The author wishes to thank Dr. Boonlert Sripeirotkul for his excellent drawing of the figures.

## REFERENCE

1. Couldwell WT, LeMay DR, McComb JG. Experience with use of extended length peritoneal shunt catheters. *J Neurosurg* 1996; 85: 425-7.
2. Kausch W. Die Behandlung des hydrocephalus der kleinen kinder *Arch klin Chir* 1908; 7: 709.
3. Martin AE, Gaskill SJ. Cerebrospinal Fluid shunts: Complication and Results. In: Cheek WR, editor-in-chief. *Pediatric Neurosurgery*. 3rd ed. Philadelphia. W.B. Saunder: 1994: 221-33.
4. Sainte-Rose C. Hydrocephalus in childhood. In: Youman JR. ed. *Neurological surgery*. 4th ed., Philadelphia, W.B.Saunders. 1996: 890-926.
5. Rekate HL. Treatment of Hydrocephalus. In: Cheek WR, editor-in-chief. *Pediatric Neurosurgery* 3rd ed. Philadelphia. W.B.Saunder: 1994: 202-20.
6. Howard MA III, Srinivasan J, Bevering CG, Winn HR, Grady MS. A guide to placement of parieto-
7. occipital ventricular catheters: Technical note. *J Neurosurg* 1995; 82: 300-4.
8. Albright AL, Haines SJ, Taylor FH. Function of pairetal and frontal shunts in childhood hydrocephalus. *J Neurosurgery* 1988; 69: 833-86.
9. Black P. McL. Hydrocephalus in Adults. In: Youman JR ed. *Neurological surgery*. 4th ed. philadelphia, W.B. Saunders. 1996: 927-44.
10. Piatt JH Jr. Hydrocephalus: Treatment. In: Wilkin RH, Rengachary SS. ed. *Neurosurgery*. 2nd ed. New York, McGraw-Hill Co., 1996: 3633-44.
11. Leclair JM, Winston KR, Sullivan BF, et al. Effect of preoperative shampoos with chlorhexidine or iodophor on emergence of resident scalp flora in neurosurgery. *Infect Control Hosp Epidemiol* 1988; 9: 8-12.
12. Venes JL. Infections of CSF shunt and intracranial pressure monitoring devices. *Infect Dis Clin North Am* 1989; 3: 289-99.

## วิธีการผ่าตัดใส่ห่อระบบน้ำหล่อสมองจากกลีบสมองฟรอนตัล

สุวันลิน รัตนาเลิศ, พ.บ.\*

ผู้เขียนได้แสดงวิธีการผ่าตัดฝังห่อระบบน้ำหล่อสมอง จากรอยเจาะโอลกศีรษะส่วนฟรอนตัล ไปยังช่องห้องโดยไม่ต้องใช้เครื่องมือพิเศษ ไม่เพิ่มเวลาการผ่าตัดและบาดแผลผ่าตัดมีเพียง 2 แห่งเท่านั้น คือที่ศีรษะและห้อง

คำสำคัญ : ห่อระบบ, น้ำหล่อสมอง, กลีบสมองฟรอนตัล

\* ภาควิชาศัลยศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อ.หาดใหญ่ จ.สงขลา 90112