

Hypophosphatasia : The Importance of Alkaline Phosphatase in Bone Mineralization

SOMCHIT JARURATANASIRIKUL, M.D.*,
PRASIN CHANVITAN, M.D.*

Abstract

The authors describe a neonate who was diagnosed with "perinatal hypophosphatasia". The clinical manifestations in this patient were small head size, soft calvarium (caput membranaceum), and short bowing forearms and legs. Laboratory investigations revealed hypercalcemia at 12.7 mg/dl, hyperphosphatemia 8.6 mg/dl, and extremely low alkaline phosphatase 0 unit/L. Roentgenographic studies of the skull showed calcification only at frontal bone and base of the skull. Spines were small and flattened. Long bones were hypomineralized and deformed. The functions of alkaline phosphatase to bone development and mineralization were reviewed. Because perinatal hypophosphatasia is a fatal condition and inherited as an autosomal recessive pattern, prenatal diagnosis is necessary. The most reliable and suitable method in our facility is serial ultrasonography from which the diagnosis can be made by the second trimester.

Key word : Alkaline Phosphatase, Bone Mineralization, Hypercalcemia, Hypophosphatasia

Hypophosphatasia is a rare inherited metabolic bone disease characterized clinically by defective bone mineralization and biochemically by deficient tissue non-specific alkaline phosphatase activity^(1,2). There are six clinical types of hypophosphatasia which vary in severity : perinatal, infantile, childhood, adult, odontohypophosphatasia, and pseudohypophosphatasia^(3,4).

The most severe form of hypophosphatasia is the perinatal type which is expressed *in utero* with profound skeletal hypomineralization^(1,4).

This disorder can cause intrauterine death, stillbirth, or neonatal death. It is inherited as an autosomal recessive trait. The prevalence is approximately 1/100,000 livebirths⁽⁵⁾.

We report here a newborn with perinatal hypophosphatasia. The importance of alkaline phosphatase in skeletal mineralization is reviewed.

CASE REPORT

The patient was a Thai male neonate born to a G₂ P₀ A₁ 28-year-old mother and 30-year-old

* Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

Fig. 1. Patient phenotype. Facial appearance was normal. Note short deformed forearms.

father who were unrelated. The first pregnancy, 3 years ago, ended with criminal abortion. The mother had no history of alcohol, cigarette or drug exposure. The patient was born at term by Caesarean section due to breech presentation. Birth weight was 3,250 g. Apgar scores were 9 and 10 at 1 and 5 minutes, respectively. The patient was noted to have short and bowing limbs. Birth length was 45 cm and head circumference was 33 cm. Physical examination revealed normal facial appearance. The calvarium was soft with only the frontal bone palpable. Chest wall was normal. The forearms and lower legs were short with anterior bowing (Fig. 1). The rest of the physical examination was unremarkable.

Laboratory investigation revealed normal electrolytes, but serum calcium and phosphorus were elevated at 12.9 mg/dl and 8.6 mg/dl, respectively. Roentgenographic study of skull bones showed that mineralization was present only at frontal bones and base of the skull (Fig. 2). The spines were small and flattened. Generalized hypomineralization was seen in the long bones. At 7

days of age, serum calcium was still elevated at 12.0 mg/dl, phosphorus 7.5 mg/dl and alkaline phosphatase 0 unit/L. BUN was 8.9 mg/dl, creatinine 0.42 mg/dl, and albumin 4.5 g/dl. Serum levels of alkaline phosphatase done at days 8 and 9 were still at 0 and 0 unit/L. The diagnosis of the perinatal form of hypophosphatasia was made on the basis of clinical, laboratory, and roentgenographic findings. The patient died at 12 days of age from respiratory failure.

DISCUSSION

The clinical manifestation of skeletal hypomineralization in our patient was present at birth which suggested that the defect of skeletal mineralization started *in utero*. The differential diagnosis for intrauterine hypomineralization were achondrogenesis type I, fibrochondrogenesis, osteogenesis imperfecta type II, and perinatal hypophosphatasia(1,2). The patients with three former syndromes usually have characteristic facial dysmorphism such as flat facies, low nasal bridge, micrognathia, and extremely small stature associated with severe bone deformities. Large cranium is found in patients with achondrogenesis and fibrochondrogenesis. In osteogenesis imperfecta type II, the patients usually have dark or blue sclerae and a beaked nose. The primary etiology causing these three syndromes is

Fig. 2. Roentgenographic finding of skull. Note the presence of mineralization only at frontal bone and base of skull.

a defect in collagen synthesis and function, resulting in secondary impairment of skeletal mineralization. In our patient, facial appearance was normal, the head was relatively small, and limb deformity was not extremely severe. The absence or extremely low level of serum alkaline phosphatase associated with hypercalcemia in our patient is an important clue that led to the diagnosis of perinatal form hypophosphatasia.

The clinical evidence of skeletal hypomineralization in patients with hypophosphatasia indicates that alkaline phosphatase is important for skeletal mineralization^(1,4). In man, there are 4 alkaline phosphatase (ALP) isoenzymes encoded by 4 distinct gene loci^(6,7). Three of the ALP isoenzymes are each expressed in a tissue specific distribution and are named according to its specific tissue as intestinal, placental, and germ cell ALP. The fourth ALP isoenzyme is ubiquitous, but especially abundant in hepatic, skeletal, and renal tissue. Thus, the liver/bone/kidney ALP is also called tissue non-specific ALP (TNSALP). In normal adults, most of the TNSALP in serum reflects about an equal amount of TNSALP from liver and bone⁽⁸⁾. In growing infants and children, serum is rich in the bone form of TNSALP resulting in much higher levels of ALP than in adults.

The biological functions of TNSALP are numerous such as hydrolysis of phosphate ester, transferase action of steady state levels of phosphoryl metabolites, and regulation of inorganic phosphorus metabolism^(6,7). The three main substrates for TNSALP function are pyridoxal-5-phosphate (PLP), inorganic pyrophosphate (PPi), and phosphoethanolamine (PEA)^(3,4). Therefore, deficiency of TNSALP results in the elevation of these three substrates. The accumulation of PPi, a potent inhibitor of hydroxyapatite crystal growth, is an explanation for defective mineralization of bone and cartilage in patients with hypophosphatasia.

Hypophosphatasia has been classified into 6 forms^(3,4). The age at which lesions are manifested in the bone can distinguish the perinatal, infantile, childhood, and adult types from each other. Odontohypophosphatasia is classified in patients who have only dental manifestation without bony involvement⁽⁹⁾. The term "pseudohypophosphatasia" describes the hypophosphatasia variant in patients who have clinical, radiological,

and biochemical resembling infantile hypophosphatasia, but serum ALP is in the normal range^(10,11). The prognosis for these six forms of hypophosphatasia depends upon the severity of the skeletal disease which reflects the age at presentation. The earlier the skeletal symptoms manifest, the more severe the disease^(3,4). The most severe hypophosphatasia is the perinatal form in which the disease occurs in utero and the infant is usually stillborn, or expires a few days after birth from respiratory failure. Profound skeletal hypomineralization results in "caput membranaceum" (membrane-like calvarium) and short deformed limbs⁽³⁾.

The diagnosis of perinatal hypophosphatasia can be made confidently when the patient has consistent clinical findings, radiological changes and low level of serum ALP⁽³⁾. The elevated levels of 3 substrates for TNSALP (PLP, PPi, PEA) support the diagnosis of hypophosphatasia, but are not pathognomonic since the elevation of these substrates can occur in a variety of metabolic bone diseases⁽¹²⁾. Currently, the molecular study of hypophosphatasia can be used for diagnosis. The gene for TNSALP is known to be located near the tip of chromosome 1 (1p36.1-p34)⁽¹³⁾. The gene comprises more than 50 kb of DNA and contains 12 exons⁽¹⁴⁾. More than 10 points of missense mutations have been reported⁽¹⁵⁾.

Perinatal hypophosphatasia is a fatal disease. Survival may be extended by intensive life support. Enzyme replacement therapy by intravenous infusion of normal plasma, or the plasma of patients with Paget disease did not lead to clinical improvement^(16,17). These observations suggest that the local tissue levels of ALP are greater than in circulation or that ALP must be present locally in the skeleton to be physiologically active for mineralization⁽¹⁸⁾. This hypothesis is supported by the hypomineralization of perinatal hypophosphatasia in which there is abundant placental ALP in the mother and amniotic fluid, but it can not protect the fetus from the disease.

Hypophosphatasia is an autosomal recessive inherited disease. Hence, prenatal diagnosis is recommended. Serial ultrasonography with careful attention to the skulls and limbs is the most reliable method, but the abnormalities are clearly evident in the second trimester^(3,4). Recently, Warren et al reported a case in which the diagnosis was

made in the first trimester by using a specific monoclonal antibody for TNSALP that would not cross react with placental ALP on a chorionic villous specimen(19). However, the specific mono-

clonal antibody is not usually done in Thailand due to the scarcity of diseases. Hence, prenatal diagnosis by serial ultrasonography is recommended at the present time.

(Received for publication on February 6, 1998)

REFERENCES

1. Jones KL. Smith's recognizable patterns of human malformation. 5th ed. Philadelphia : WB Saunders, 1997.
2. McKusick VA. Mendelian inheritance in man : Catalogs of autosomal dominant, autosomal recessive, and X-linked phenotypes. 8th ed. Baltimore : Johns Hopkins University Press, 1988.
3. Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. *Endocrinol Rev* 1994;15:439-61.
4. Whyte MP. Hypophosphatasia. In : Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. 7th ed. New York : McGraw-Hill, 1995:4095-111.
5. Fraser D. Hypophosphatasia. *Am J Med* 1957; 22:730-46.
6. Harris H. The human alkaline phosphatase : what we know and we don't know. *Clin Chem Acta* 1990;186:133-50.
7. Moss DW. Perspectives in alkaline phosphatase research. *Clin Chem* 1992;38:2486-92.
8. Millan JL, Whyte MP, Avioli LV, Fishman WH. Hypophosphatasia (adult form) : quantitation of serum alkaline phosphatase isoenzyme activity in a large kindred. *Clin Chem* 1980;26:840-5.
9. Hu C-C, King DL. A clinical and research protocol for characterizing patients with hypophosphatasia. *Pediatr Dentistry* 1996;18:17-23.
10. Scriver CR, Cameron D. Pseudohypophosphatasia. *N Eng J Med* 1969;281:604-6.
11. Cole DE, Salisbury SR, Stinson RA, Coburn SP, Ryan LM, Whyte MP. Increased serum pyridoxal-5-phosphate in pseudohypophosphatasia. *N Eng J Med* 1986;314:992-3.
12. Licata AA, Radfor N, Bartter FC, Bou E. The urinary excretion of phosphoethanolamine in diseases other than hypophosphatasia. *Am J Med* 1978;64:133-8.
13. Smith M, Weiss MJ, Griffin CA, et al. Regional assignment of the gene for human liver/bone/kidney alkaline phosphatase to chromosome 1 p36.1 - p34. *Genomics* 1988;2:139-43.
14. Weiss MJ, Ray K, Henthorn PS, Lamb B, Kadesch T, Harris H. Structure of human liver/bone/kidney alkaline phosphatase gene. *J Biol Chem* 1988;263:12002-10.
15. Greenberg CR, Taylor CLD, Haworth JC, et al. A homoallelic Gly³¹⁷ → Asp mutation in ALPL causes the perinatal (lethal) form of hypophosphatasia in Canadian Mennonites. *Genomics* 1993; 17:215-7.
16. Whyte MP, McAlister WH, Patton LS, et al. Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich Paget plasma : results in three additional patients. *J Pediatr* 1984;105: 926-33.
17. Whyte MP, Magill HL, Fallon MD, Herrod HG. Infantile hypophosphatasia : normalization of circulating bone alkaline phosphatase activity followed by skeletal remineralization. *J Pediatr* 1986;108:82-8.
18. Whyte MP, Habib D, Coburn SP, et al. Failure of hyperphosphatasemia by intravenous infusion of purified placental alkaline phosphatase to correct severe hypophosphatasia : evidence against a role for circulating ALP in skeletal mineralization. *J Bone Miner Res* 1992;7 Suppl 1: S155.
19. Warren RC, McKenzie CF, Rodeck CH, Moscoso G, Brock DJH, Barron L. First trimester diagnosis of hypophosphatasia with a monoclonal antibody to the liver/bone/kidney isoenzyme of alkaline phosphatase. *Lancet* 1985;ii:856-8.

ยัยโปฟอสฟ่าเทเชีย : ความสำคัญของเย็นซัยม์ อัลคาไลน์ ฟอสฟ่าเทส ต่อการสร้างกระดูก

สมจิตร์ จาธุรัตนศิริกุล, พ.บ.*, ประลิน จันทร์วิทัน, พ.บ.*

รายงานผู้ป่วยการรักษาเด็ก 1 รายที่ได้รับการวินิจฉัยว่าเป็น perinatal hypophosphatasia ความผิดปกติที่พบในผู้ป่วยรายนี้ ได้แก่ ศีรษะขนาดเล็ก กะโหลกศีรษะบานมากจนสามารถคลำเนื้อสมองได้ (caput membranaceum) กระดูกแขนขาสั้นและโค้งงอ (short bowing forearms and legs) ผลการตรวจทางห้องปฏิบัติการพบว่าระดับแคลเซียมในเลือดสูง 12.9 มก./ดล. ฟอสฟอรัส 8.6 มก./ดล. และ alkaline phosphatase 0 ยูนิต/ล. ภาพถ่ายรังสีบีเวนศีรษะพบว่ามีกระดูกแข็งพะ (frontal bone) และล่วนฐานของกะโหลกศีรษะเท่านั้น กระดูกลันหลังขนาดเล็กและแบน กระดูกแขนขาเมื่อกัดจะแตกง่าย และผิดรูปร่าง ให้ทบทวนวารสารเรื่องความสำคัญและบทบาทของเอนซัยม์ alkaline phosphatase ต่อพัฒนาการของการสร้างกระดูกดังต่อไปนี้

การรักษาเด็ก 1 รายที่ได้รับการวินิจฉัยว่าเป็น perinatal hypophosphatasia ทุกรายเลี้ยงชีวิตในวัยทารก แรกเกิด แบบแผนการถ่ายทอดทางพันธุกรรมเป็นลักษณะ autosomal recessive จะนั่น การวินิจฉัยก่อนคลอดจึงเป็นสิ่งจำเป็น วิธีที่ใช้ได้และเหมาะสมตามสภาพการณ์ของประเทศไทย คือ การตรวจการในครรภ์ด้วยคลื่นความถี่สูงเป็นระยะ ซึ่งสามารถวินิจฉัยความผิดปกตินี้ได้ในระยะต่อมาสักระยะ.

ค่าสำคัญ : การสร้างกระดูก, กระดูกบาง, แคลเซียมในเลือดสูง, ยัยโปฟอสฟ่าเทเชีย

* ภาควิชาภูมิราษฎร์, คณะแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์, อ.หาดใหญ่, จ.สงขลา 90112