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Abstract 
The pathogenetic concept of renal hyperperfusion and hyperfiltration in inducing glo­

merular pathology and disease progression documented in the renal ablation model in experimental 
animals to mimic renal disease with reduced nephron mass has recently been challenged. In con­
trast to the above, the intrarenal hemodynamic study in a variety of chronic glomerulonephro­
pathies reveals a unique characteristic of renal hypoperfusion rather than hyperperfusion. This is 
associated with an elevated renal arteriolar resistance and reductions in renal plasma flow and peri­
tubular capillary blood flow. The magnitude of reduction in peritubular capillary blood flow is 
inversely proportional to the degree of tubulointerstitial disease and tubular dysfunction. A progres­
sive reduction in the vascular space due to nonvascular expansion with disease progression supports 
the concept of hypoperfusion of a whole kidney as well as a single nephron. In accordance with the 
renal ablation model and early diabetes mellitus, a similar hypoperfusion pattern is also sub­
sequently observed in the chronic stage of renal ablation model in animals and late diabetic nephro­
pathy. The disparity between the hyperperfusion and hypoperfusion in inducing renal disease pro­
gression can be enlightened by the Noble Truth of Lord Buddha stating "The Middle Tract is The 
Balance of Nature". Further support of this conceptual view of renal hypoperfusion as a deter­
minant of tubulointerstitial disease and disease progression is in accordance with the therapeutic 
benefit with an enhanced-renal-perfusion formula per se in a variety of chronic glomerulonephro­
pathies. 
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The correlation between tubulointerstitial 
disease and renal functional decline in patients suf­
fering from a variety of chronic glomerulonephritides 

has been demonstrated for over two decades0,2). 
Despite this fact, the precise pathogenetic mecha­
nism as to which would be the crucial determinant 
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of tubulointerstitial disease still remains unsettled. 
However, much accumulative evidence renders sup­
port that the key answer to this issue is likely to be 
hemodynamically mediated. In this regard, the con­
ceptual view of hyperperfusion and hyperfiltration 
inducing renal disease progression derived from the 
experimental model of renal ablation in animals in an 
attempt to mimic a clinical setting of renal disease 
with reduced nephron mass, has been widely 
accepted(3.4). The intrarenal hemodynamics charac­
teristic of this experimental model reveals a high 
renal plasma flow (hyperperfusion) and glomerular 
filtration rate (hyperfiltration), a normal or elevated 
intraglomerular hydrostatic pressure and a low renal 
arteriolar resistance(3-5). The question which re­
mains to be established is whether the hemodyna­
mic pattern of hyperperfusion observed in this ani­
mal model is also applicable to a variety of clinical 
settings of chronic glomerulonephritides in humans? 
A few clinical disorders with a hemodynamic pattern 
similar to the hyperperfusion of the renal ablation 
model has been observed in the early stage of dia­
betes mellitus, unilateral nephrectomy and renal 
transplant recipients receiving a kidney from a pedia­
tric donor( 5-8). It is, therefore, the general belief that 
a nephron under such hyperperfusion of a whole 
kidney as well as of a single nephron would likely 
incriminate in the development of intraglomerular 
hypertension and, thus, subsequently exert further a 
significantly hemodynamic impact upon the histo­
pathologic hallmarks of disease progression namely 
glomerulosclerosis and extracellular matrix expan­
sion commonly encountered in the chronic stage of 
diabetic nephropathy and renal ablation model in 
animals(9-l2). This hemodynamic concept of 
hyperperfusion also implicates that the peritubular 
capillary blood flow supplying the tubulointerstitial 
compartment would also be hyperperfused. There­
fore, such a hyperperfused peritubular capillary 
blood flow is believed to be responsible for the sub­
sequent development in the later stage of tubulo­
interstitial disease. 

The preceding conceptual view of hyper­
perfusion inducing renal disease progression has led 
to a general acceptance that this model is likely to be 
extrapolated to other clinical settings of chronic 
glomerulonephropathies. 

It, thus, appears that this specific issue 
which h~s never been specifically proven, still re­
mains to be established. That the remaining un­
solved issue has encouraged us as well as others to 

approach such a problem by means of an intrarenal 
hemodynamic study. The information gathered from 
such a study in a wide spectrum of clinical settings 
of human renal diseases revealed a strikingly con­
trast hemodynamic pattern than that observed in the 
renal ablation model and early stage of diabetes 
mellitus. 

Intrarenal hemodynamic study in renal disease : 
Perfusion modulates structure and function. 

In accordance with the preceding context, 
we performed a hemodynamic study by the pre­
viously described method03,l4) in a variety of 
human clinical renal diseases. In brief, there are 2 
patterns of hemodynamic characteristics which dis­
tinguish one with normal renal perfusion from the 
other with low renal perfusion. 

In the first category associated with normal 
perfusion, the hemodynamic characteristics reveal a 
normal vascular function expressed by normal renal 
plasma flow, peri tubular capillary blood flow and 
normal of both afferent and efferent arteriolar resis­
tances. (Fig. I) The presence of normal perfusion is 
likely to modulate the normal structure and function 
of the nephronal compartments( I 5). In the presence 
of normal renal plasma flow, the glomerular func­
tion appears to be intact and expresses as normal 
glomerular filtration rate, normal ultrafiltration 
coefficient of the glomerulus and normal intraglo­
merular hydrostatic pressure. In addition, the glo­
merular structure also shows no or low evidence of 
disease progression such as glomerulosclerosis and 
it is usually associated with a benign clinical course. 
Similarly, the normal peritubularcapillary blood flow 
also modulates the normal function and structure of 
the tubulointerstitial compartment. In the presence 
of normal peritubular capillary blood flow, the tubu­
lar function appears to be intact and expresses as (I) 
a normal tubular transport which is reflected by a 
normal fractional excretion of filtered solutes, (2) a 
normal maximal concentration and (3) a normal aci­
dification. This normal tubular function also reflects 
the normal structure of the tubulointerstitial com­
partment or absence of tubulointerstitial disease. All 
of these findings indicate that the glomerular endo­
thelium is functionally intact06). 

In the second category associated with a 
low renal perfusion such as that observed in the cli­
nical settings of nephrosis associated with focal seg­
mental glomerulosclerosis, nephrosis associated with 
membranoproliferative glomerulonephritis, IgA glo-
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Fig. 1. Intrarenal hemodynamics in balanced state · 
with normal perfusion. RA = afferent arte­
riolar resistance, dyne.s.cm·S, MAP= mean 
arterial pressure, mmHg. PG = intraglo­
merular hydrostatic prpessure, mmHg, RE = 

HYPO PERFUSION 

HYPOFILTRATION 

efferent arteriolar resistance, dyne.s.cm·S, Fig. 2. Intrarenal hemodynamics in chronic glo· 
merulonephropathies, RA = afferent arterio­
lar resistance, RE = efferent arteriolar resis­
tance, RPF = renal plasma flow, PTCB = 
peritubular capillary blood flow, KFG = 
ultrafiltration coefficient of glomerulus, 
PG = intraglomerular hydrostatic pressure 
GFR =glomerular filtration rate, l =elevated, 
! = decreased 

PF = effective filtration pressure assumed to 
be 35 mmHg in normotensive and 40 mmHg 
in hypertensive, RBF =renal blood flow, mV 
sed1.73 m2, KFG = ultrafiltration coeffi-
cient of glomerulus, mVsedmmHg, TP = 
total plasma protein, FF = filtration frac-
tion. figures in parentheses represent nor-
mal values. 

merulonephropathy, hemolytic uremic syndrome, the 
late stage of diabetic nephropathy, antiglomerular 
basement membrane disease, lupus nephritis, cres­
centic glomerulonephritis, a variety of chronic glo­
merulonephropathies and reflux nephropathy, there 
are usually associated functional and structural 
alterations of the nephronal compartments which 
are characterized by ( 1) a vascular dysfunction ex­
pressed by a low renal plasma flow and low peritu­
bular capillary blood flow and elevation of both affe­
rent and efferent arteriolar resistance (Fig. 2) (2) a 
glomerular dysfunction expressed by a low glomeru­
lar filtration rate, low ultrafiltration coefficient of 
the glomerulus and elevated intraglomerular hydro­
static pressure (intraglomerular hypertension) and a 
greater incidence of glomerulosclerosis and (3) a 
tubular dysfunction expressed as a transport defect 
which is reflected by enhanced fractional excretion 
of filtered solutes, a maximal concentration defect 

and acidifi~ation defect, and an increased incidence 
of tubulointerstitial fibrosis06-19) . The preceding 
intrarenal hemodynamic findings documented in a 
variety of human clinical settings of renal disease 
revealed 3 important remarks that are distinctly 
contrast to that observed in the renal ablation 
model in animals. Firstly, with the exception of that 
observed in the early stage of diabetes mellitus, the 
intrarenal hemodynamics observed in the early stage 
of renal disease such as in minimal-change, steroid­
sensitive nephrosis, revealed mainly a normal range 
of renal plasma flow and peri tubular capillary blood 
flow and did not encounter a stage of hyperperfu­
sion. Secondly, the intrarenal hemodynamics docu­
mented in the clinical settings of glomerulonephro­
pathies associated with renal disease progression 
always reveal a characteristic pattern of renal hypo­
perfusion . In fact , the intrarenal hemodynamics 
characteristic of hyperperfusion have never been 
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observed even in the very early stage of the chronic 
form of glomerulonephropathy such as nephrosis 
associated with focal segmental glomerulosclerosis, 
membranoproliferative glomerulonephritis, crescen­
tic glomerulonephritis, lupus nephritis and IgA 
nephropathy. This observation would raise an intri­
guing issue as to whether a state of hyperperfusion 
is essential to the subsequent development of renal 
disease progression in the chronic form of renal 
disease. The intrarenal hemodynamic information 
gathered in over 500 determinations for the past 
20 years in the majority of renal diseases with the 
exception of diabetes mellitus does not support the 
conceptual view of hyperperfusion. It is likely that 
this specific issue remains to be further clarified. 
Thirdly, a very interesting issue needing to be 
addressed is whether a single nephron under total 
renal hypoperfusion associated with chronic glo­
merulonephropathy is either hypoperfused or hyper­
perfused? Although there is no direct answer to this, 
indirect evidence can be derived from a morpho­
metric analysis in a variety of chronic glomerulo­
nephropathies in which there is general agreement 
that the vascular component or the ratio between the 
vascular and nonvascular components is reduced 
regardless of the size of the glomerulus08-23). The 
reduction in vascular component or space is due to 
either the encroachment of the vascular space exter­
nally by an extracellular matrix expansion and cell 
proliferation, and internally by an intraluminal coagu­
lation and altered hemorheology. This prudent in­
formative evidence derived from the morphome­
tric analysis seems to correlate with the marked ele­
vation in renal arteriolar resistance and low plasma 
flow observed in chronic glomerulonephritis(8, 15, 
16,24). A 6- to 10-fold increase in renal arteriolar 
resistance (normal value 2,700 dyn.s.cm-5) in the 
presence of low perfusion speaks against the con­
cept of hyperperfusion of a single nephron. There­
fore, the proposed hemodynamic pattern of hyper­
perfusion of a single nephron in an experimental 
model of renal ablation in animals with the charac­
teristic increase in renal plasma flow and low renal 
arteriolar resistance is unlikely to be applicable to 
human clinical settings of chronic glomerulonephri­
tis with reduced nephron mass. The plausible expla­
nation for such a difference between the two models 
is likely based on the difference in fundamental struc­
ture and function of the glomerular endothelium. In 

fact, the hyperperfused state recognized in the early 
course of the renal ablation model is the natural res­
ponse of an intact endothelium to a high blood flow 
with a respective increase in the release of endothe­
lium-dependent vasodilators, whereas, the hypoper­
fused state associated with chronic glomerulonephri­
tis is the abnormal response of the dysfunctioning 
endothelium to the low flow state with an inade­
quate release of the endothelium dependent vasodi­
lators06). Further observation in the chronic stage 
of renal ablation models in animals and late stage 
of diabetic nephropathy also revealed a hemodyna­
mic pattern of hypoperfusion similar to that observed 
in chronic glomerulonephritis. 

The precise mechanism responsible for the 
progressive loss of renal perfusion in the renal abla­
tion model or the early stage of diabetes mellitus is 
likely to be explained on the hemodynamic basis. 
One of the general observations under this circum­
stance is that there is an increased metabolism under 
such extraordinary high fluid shear stress and a con­
comitantly increased production of reactive oxygen 
radicals. The endothelium in the chronic stage under 
continuous exposure to the supra high t1uid shear 
stress is likely to dysfunction and thereby express 
altered endothelial surface phenotypes with upregu­
lations of growth factors, vasoactive mediators, adhe­
sion molecules and reactive oxygen radicals(25,26). 
Two substantial pieces of evidence support this 
view. Firstly, there is a greater increase in the cellu­
lar metabolism after resection by which a great 
quantity of reactive oxygen radicals is produced(27, 
28). This high concentration ofreactive oxygen radi­
cals is believed to be the important trigger inducing 
the subsequent injury to the glomerular endothelium 
as well as increasing the renal arteriolar resistance 
by upregulating the vasoconstrictors. Secondly, the 
rapid growth of the nonvascular component of the 
renal mass after resection is likely to progressively 
reduce the vascular space by external encroachment 
of the vascular wall due to cell proliferation and 
extracellular matrix expansion as a result of upregu­
lating the growth factor. These preceding views are 
well illustrated by the sequential morphometric ana­
lyses of the glomerulus in the chronic stage in ani­
mals with subtotal nephrectomy(9) and by the sub­
sequent assessment of intrarenal hemodynamics 
which revealed a progressive increase in renal arterio­
lar resistance, intraglomerular hypertension and re­
ductions in glomerular filtration rate, renal plasma 



500 R. SENSIRIVATANA et aL 

flow and peritubular capillary blood flow(29). A 
similar hemodynamic alteration associated with the 
hyperglycemic state is likely to progressively induce 
an endothelial dysfunction along the course of dia­
betic nephropathyCl 0, 12). Therefore, the hyperper­
fused state observed early in the course of human 
diabetic nephropathy and renal ablation model in 
animals can subsequently be converted later in the 
course into the hypoperfused state with characteristic 
loss of renal structure and function. The disparity 
between these two conceptual views is likely to be 
explained by the wisdom derived from the "NOBLE 
TRUTH OF LORD BUDDHA" stating that "The 
middle tract is the balance of nature" which means 
that any deviation in blood perfusion from the natu­
ral balance, either too high or too low, is unnatural 
and indeed harmful. 

Peritubular capillary blood flow determines the 
function and structure of tubulointerstitial com· 
partment. 

It has been observed that the peritubular 
capillary blood flow in the normal or balanced state 
is usually associated with normal function and struc­
ture of the tubulointerstitial compartment. By linear 
regression analysis, the normal peritubular capillary 
blood flow is likely to maintain the normal tubular 
transport expressed by normal fractional excretion 
of filtered solutes. With the progression of renal 
disease, there is a progressive reduction in peritubu­
lar capillary blood flow and a progressive increase in 
tubular transport defect expressed by increase in 
percentage of dysfunction of FE solute. (Fig. 3) This 
progressive reduction in peritubular capillary blood 
flow also correlates inversely with the intensity of 
tubulointerstitial fibrosis. This view has recently 
been supported by the elegant demonstration by 
Bohle et al that the postglomerular capillary space 
correlates negatively with the cortical interstitial 
volume and serum creatinine level(31). 

The consistently observed reduction in 
peritubular capillary blood flow is due to multiple 
factors namely a total reduction in renal plasma flow 
secondary to glomerular endothelial dysfunction, a 
glomerular pathology obstacle to blood flow and a 
preferential constriction at the efferent arteriole05, 
16,30). In the presence of glomerular endothelial 
dysfunction, the reduction in peritubular capillary 
blood flow to a critical level is likely to be a pro­
gressive and a self-perpetuating event. In accor­
dance with the Poiseuille-Hagen relationship, this 
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Fig. 3. Linear regression analysis illustrates the 
peri tubular capillary blood flow (PTCB) cor­
relates negatively with the degree of tubular 
transport defect expressed by fractional ex­
cretion (FE) of solute. 

conceptual view can be explained by the in vitro 
study of molecular aspects of signal tranduction of 
shear stress on the endothelial cell(25). Under a low 
flow condition, the endothelial cell expresses its 
phenotypes with upregulation of vasoconstrictors, 
growth factors, adhesion molecules, procoagulant 
tissue factors, inhibitors to plasminogen activators 
and to tissue metalloproteinase(25,32-39). In the 
presence of dysfunctioning glomerular and peri tubu­
lar capillary endothelium, these mediators released 
are likely to be greatly amplified and persistent. The 
continuous release of these pathogenetic mediators 
would culminate in the progressive reduction in vascu­
lar space by external encroachment of the vascular 
wall due to extracellular matrix expansion and cell 
proliferation secondary to the enhanced growth fac­
tors and by intraluminal obstacle to blood flow due 
to intravascular coagulation secondary to the release 
of adhesion molecules and procoagulant proteins 
(16). This concept of progressive reduction in renal 
perfusion has been well substantiated in all forms of 
chronic glomerulonephritides associated with tubu­
lointerstitial disease. The severity of tubulointersti­
tial disease is inversely proportional to the magnitude 
of reduction in peri tubular capillary blood flow( 40). 
It is consistently observed that in patients with chro­
nic glomerulonephritis and severe tubulointerstitial 
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disease, the peritubular capillary blood flow is 
usually less than 200 mVmin/1.73 m2 (normal 480 
mVmin/1.73 m2). Beyond this critical point, there is 
usually an accelerated rate of renal disease progres­
sion. (Fig. 3) These patients are usually refractory to 
conventional treatment (prednisolone ± cyclophos­
phamide) and eventually enter into end-stage renal 
disease. 

What is then the cause-and-effect relation­
ship between the reduction in peritubular capillary 
blood flow and the development of tubulointerstitial 
disease ? In this regard, there is evidence from both 
a clinical setting in humans as well as experimental 
ischemic injury in animals to support that the re­
duction in peritubular capillary blood flow is likely 
to be the primary trigger of tubulointerstitial disease. 
In humans with minimal-change and IgM steroid­
resistant nephrosis, there was a reduction in peritu­
bular capillary blood flow for quite some time before 
the detection of tubulointerstitial disease and tubular 
dysfunction( 41 ). In the experimental setting of renal 
artery occlusion in animals, the ischemic insult per 
se subsequently induced a tubulointerstitial lesion 
which mimicked human glomerulonephropathy(42). 
In this essence, the ischemic insult is likely to exert 
a profound effect upon the tubular epithelium by 
upregulating the tubular-derived cytokines, growth 
factors, vasoactive mediators, adhesion molecules, 
reactive oxygen metabolites and translocating the in­
tegrins from the basolateral to the apical region(43). 
In addition, other triggers such as filtered macro­
molecular protein, lipid, free iron, intraluminal cast, 
ammonia and complements can also induce addi­
tional damage to the tubular epithelium(44). Taken 
together, these preceding triggers would perturb the 
phospholipid component of the cell membrane with 
subsequent breakdown of arachidonic acid and in­
crease in intracytosolic calcium( 45). The preceding 
event is indirectly supported by the demonstration of 
a hypermetabolic state, depletion of cellular high 
energy ATP, reduction in ATPase activity and in­
crease in reactive oxygen species encountered in a 
condition mimicking remnant nephron exposed to 
the ischemic insult(27). The releases of chemoattrac­
tant proteins, adhesion molecules and MHC class 
are responsible for the infiltration of immunologic 
T lymphocytes and macrophages. The activation of 
procoagulant phenotype expression on the surface 
of macrophage in conjunction with the leakage of 
plasma constituents from the abnormally ischemic 
permeable vascular wall into the interstitium, would 

activate the extrinsic coagulation pathway with 
subsequent fibrin formation, activation of fibroblast 
and extracellular matrix expansion( 46-50). These 
multifactorial interplays would synergistically act in 
concert and induce cell degeneration, proliferation 
and extracellular matrix expansion with subsequent 
encroachment of the functioning peritubular capil­
lary network. In fact, obliteration of postglomerular 
capillary network has previously been implicated 
(31,51). It is also our general impression that there 
is a progressive loss of peritubular capillary blood 
which correlates with the increment in severity of 
tubulointerstitial disease. 

A new therapeutic strategy aiming to enhanced 
renal perfusion. 

This preceding concept of hemodynami­
cally mediated tubulointerstitial disease is further 
substantiated by the therapeutic modalities. Thera­
peutic failure in preventing disease progression in 
patients with a variety of chronic glomerulonephri­
tides has consistently been observed under conven­
tional therapy (prednisolone and cyclophospha­
mide)05.52-54). In contrast, functional improve­
ment can be achieved by a variety of therapeutic 
agents aiming to improve a peritubular capillary 
blood flow04-16,30,40,41,55-62). Improvement in 
hemodynamics and function can be substantiated 
following the enhanced renal perfusion formula. 
This therapeutic response can be eludicated even in 
severe cases of nephrosis associated with focal seg­
mental glomerulosclerosis, membranoproliferative 
glomerulonephritis and chronic glomerulonephritis 
with a severe degree of functional impairment05. 
24,30,63). It is of notion that many of these patients 
have previously been quoted as refractory to treat­
ment and pending on future renal replacement 
therapy. Improvement in peritubular capillary blood 
flow gradually minimizes the magnitude of tubular 
dysfunction of which is observed in the enhanced­
renal-perfusion therapy per se. Inasmuch as this 
therapeutic maneuver encompasses multiple thera­
peutic agents with diversified pharmacologic 
actions, the therapeutic achievement observed in 
our study as well as by other investigators simply 
implies that the improvement in renal perfusion by 
vasodilatory agents may be part of the several mecha­
nisms of action simultaneously interplaying namely 
(1) cytoprotective and antiproliferative actions by 
preventing the increment in cytosolic calcium of 
which its action is shared by the antiplatelet agent, 



502 R. SENSIRIVATANA et al. 

calcium channel blocker and angiotension convert­
ing enzyme inhibitor (2) correction of altered hemo­
rheology by anticoagulant and antiplatelet agent and 
(3) increase in effective circulatory blood volume by 
hydration. 
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