

Population Genetic Data on Loci LDLR, GYPA, HBGG, D₇S₈ and GC in the Bangkok Population Compared with Rural Thais from Trat Province

TADA SUEBLINVONG, M.D.*,
WILAI ANOMASIRI, Ph.D.*,
TANASAK SUEBLINVONG, M.D.***

NANTANA SIRISUP, M.D.**,
UNCHALEE KONGSRISOOK, M.Sc.*,

Abstract

Prior to the introduction of any DNA marker as a tool for person identification and paternity test in certain ethnic groups, a population genetic database should be constructed. Using multiplex primers in single tube polymerase chain amplification, 5 loci of unrelated genes in the PM Amplitype® kit (Perkin Elmer) were studied in two Thai population groups : 228 DNA samples were extracted from blood collected at the Borai rural area in Trat province; another 123 DNA samples were collected at the outpatient clinic, Department of Forensic Medicine, King Chulalongkorn Memorial Hospital, Bangkok. Analysis of alleles and genotypes was performed after reversed dot blot hybridization of PCR products to allelic sequence specific probes immobilized on the membrane strip followed by nonradioisotopic detection according to the manufacturer's protocol. Population genetic statistic parameters including discrimination power (DP), the probability of matching (PM), power of exclusion for trio (PE trio) and typical paternity index (PI typical) were computed. Both Thai population groups showed no significant deviation from the Hardy Weinberg Expectation (HWE). The combined DP of all 5 loci in the PM Amplitype® markers was 0.993636 for rural Thais and 0.994409 for Thais from Bangkok. The combined PM for rural Thais and those living in Bangkok was 0.006364 and 0.005591, respectively. The combined PE trio was 0.696825 and 0.698875 in both Thai population groups and the combined PI typical values were <1.0.

In conclusion, person identification using PM Amplitype DNA markers was efficient and satisfactory within certain limits. Hence, the application of PM Amplitype® DNA markers for paternity tests should be cautiously considered and applied in combination with other parameters.

Key word : PM Markers, Population Genetic Database, DNA Markers

* Department of Biochemistry,

** Department of Forensic Medicine,

*** Department of Obstetrics & Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Single and multiple loci probes recognizing highly polymorphic DNA sequences throughout the genome have become powerful tools for both person identification in forensic casework and paternity testing⁽¹⁻³⁾. However, DNA probe technology requires substantial amounts of DNA for which the extraction procedures are rather tedious. The polymerase chain reaction (PCR) *in vitro* amplifies specific loci and subsequent detection of polymorphic alleles contained within the PCR product offers a relatively simple analytical technique. Several genetic loci amenable to PCR can now be analyzed using commercially available kits. These loci are: low density lipoprotein receptor, LDLR⁽⁴⁾; glycophorin A, GYPA⁽⁵⁾; hemoglobin G gammaglobin, HBGG⁽⁶⁾; D₇S₈⁽⁷⁾ and Group specific component, GC⁽⁸⁾ which were all included in the Amplitype® PM PCR Amplification and Typing kit from Perkin Elmer Corporation. The kit includes amplification reagents that allow the simultaneous amplification of the five genetic loci mentioned together with one controlled locus (HLA DQ α). The genotype for each locus is determined from the pattern of blue dots on the strip after reverse dot blot hybridization followed by biotinylated enzyme linked color detection.

It is now known that evidence of DNA has a higher discrimination power compared with conventional genetic markers. But prior to the introduction of a new test for person identification in forensic casework or paternity testing, population data of that particular marker including allele frequencies should be established^(9,10). In this paper, we compared population genetic data of PM markers in partially related Thai families living in Bangkok to those of unrelated subjects living at Trat Province which is located near the Thai-Cambodian border and calculated the population genetic indices.

MATERIAL AND METHOD

Blood samples

Unrelated blood samples: Heparinized blood of 228 unrelated Thais was collected from the Borai rural area at Trat province and kept at -20°C since 1992. These samples were taken from people attending the Borai Malaria Clinic for malarial parasite checking.

Bangkok blood samples: The 123 heparinized blood samples were collected from people attending the outpatient clinic of the Department of

Forensic Medicine at Chulalongkorn Hospital, Thai Red Cross Society from 1996 to 1997. These samples were taken for blood group and paternity testing.

DNA extraction and amplification

The unrelated blood samples were thawed, then 200 μ l each were washed twice with phosphate-buffered saline (PBS). The pellet was resuspended in lysis buffer and digested with Proteinase K (Boringer Manheim) at 55°C for 2 hours or more⁽¹¹⁾. Aliquots of 4 μ l of the extract were used for amplification.

Blood samples of 50 μ l from the Bangkok group were used for DNA extraction using Chelex - 100⁽¹²⁾ and 8 μ l of the DNA extract were used for amplification.

The Amplitype® PM amplification kit was used. Samples were amplified in a Perkin Elmer DNA Thermal Cycler 480 using parameters recommended by the manufacturer⁽¹³⁾. Verification of amplification at all six loci was determined by electrophoresis of the product on a 2 per cent agarose gel (Nusieve) in 1x TBE⁽¹⁴⁾ buffer containing ethidium bromide at 80 V for 25-30 min.

DNA typing

The types of the five loci in the PM kit were determined according to the manufacturer's recommendations^(13,15). The PCR product was heat denatured at 95°C for 9 min. This step should not exceed 10 min otherwise the signal might be diminished. After hybridization and stringent washing, the strips should be rinsed once with 1x Citrate buffer before adding 5 ml 1x Citrate buffer (0.1 M Sodium citrate, pH 5.0) and shaking at room temperature for 5 min. Omitting this step will cause low signal intensity after colour development.

Statistical analysis

The frequency of each allele for each locus was calculated separately from the number of each genotype in both the rural Trat group and the Bangkok group. Possible divergence from the Hardy-Weinberg expectations (HWE) was determined for both groups by a standard χ^2 analysis of the observed and expected genotypes.

The unbiased estimate of the expected heterozygosity was computed from the formula:⁽¹⁶⁾

$$h = n(1 - \sum x^2) / (n-1)$$

Where x = allele frequencies and n = total number of alleles observed.

In addition, each locus of both groups was calculated for statistical values of: the polymorphism information content, PIC(17,18); discrimination power, DP(19,20); probability of matching, PM(21); power of exclusion(21), PE trio (alleged father, mother and child) and PE duo (single parent/child) from the formula

$$\text{PE trio} = \sum P_i (1 - P_i)^2 + \sum (P_i P_j)^2 (3P_i + 3 P_j - 4)$$

$$\text{PE duo} = \sum P_i^2 (1 - P_i)^2 + \sum 2P_i P_j (1 - P_i - P_j)^2$$

Where P_i = most common allele, P_j = next most common allele; probability of inclusion(21), Pi trio and Pi duo; and typical paternity index, PI typical (22). The combined statistical values calculated for all five loci of PM marker® were DP, PM, PE trio, PE duo, PI typical, Pi trio and Pi duo.

RESULTS

At the LDLR locus, only 166 out of 228 samples from Trat province could be clearly typed. The negative result at this locus might be due to

the degradation of the DNA template since the blood samples had been kept at -20°C since 1992. The allele and genotype frequencies found among rural Thais at Trat province are shown in Table 1. Comparison of allele frequencies and genotype frequencies of all five loci in the Bangkok samples (Table 2) to rural Thais yielded similar results. It should be noticed that there was no C allele found at the HBGG locus in both groups (Table 1 and 2).

A standard χ^2 analysis of the observed and expected genotypes showed no significant deviation ($P > 0.05$) from the Hardy-Weinberg equilibrium (Table 1 and 2) in both Thai groups for all the loci studied. Table 3 presents the statistical parameters necessary for a population genetic database. The combined discrimination power (DP) of all 5 loci in the PM® marker kit was 0.9936 for rural Thais and 0.9944 for Bangkok Thais. The combined probability of matching (PM) which signified the chance that two unrelated individuals might match

Table 1. Allele frequencies and genotype frequencies of PM marker in rural Trat group. (n = 228).

Alleles	LDLR ^a	GYPA ^b	HBGG ^c	D ₇ S ₈ ^d	GC ^e
A	0.286	0.759	0.351	0.612	0.217
B	0.714	0.241	0.649	0.388	0.417
C	NA*	NA	0.000	NA	0.366
Genotypes					
AA	0.096	0.548	0.088	0.377	0.031
AB	0.380	0.421	0.526	0.474	0.236
BB	0.524	0.031	0.386	0.149	0.158
AC	NA	NA	0.000	NA	0.136
BC	NA	NA	0.000	NA	0.281
CC	NA	NA	0.000	NA	0.158

* = No allele C in the Amplitype® PM PCR Amplification and Typing Kit (Perkin - Elmer Corporation)

a = LDLR, n = 166, Observed Heterozygosity = 0.380; Expected Heterozygosity (unbiased) = 0.41; HWE test by comparing χ^2 between observed and expected genotype not significantly different, $P > 0.05$

b = GYPA, Observed Heterozygosity = 0.421, Expected Heterozygosity (unbiased) = 0.367; HWE test not significant, $P > 0.05$

c = HBGG, Observed Heterozygosity = 0.526, Expected Heterozygosity (unbiased) = 0.457; HWE test not significant, $P > 0.05$

d = D₇S₈, Observed Heterozygosity = 0.474, Expected Heterozygosity (unbiased) = 0.476; HWE test not significant, $P > 0.05$

e = GC, Observed Heterozygosity = 0.654, Expected Heterozygosity (unbiased) = 0.647; HWE test not significant, $P > 0.05$

Table 2. Allele frequencies and genotype frequencies of PM markers in Bangkok Thai group (n = 123).

Alleles	LDLR ^a	GYPA ^b	HBGG ^c	D ₂ S ₈ ^d	GC ^e
A	0.313	0.667	0.366	0.545	0.171
B	0.687	0.333	0.634	0.455	0.362
C	NA*	NA	0.000	NA	0.467
Genotypes					
AA	0.130	0.447	0.106	0.260	0.049
AB	0.358	0.439	0.528	0.553	0.122
BB	0.512	0.114	0.366	0.187	0.146
AC	NA	NA	0.000	NA	0.122
BC	NA	NA	0.000	NA	0.309
CC	NA	NA	0.000	NA	0.252

* = No allele C in the Amplitype® PM PCR Amplification and Typing Kit (Perkin – Elmer Corporation)

a = LDLR, Observed Heterozygosity = 0.358; Expected Heterozygosity (unbiased) = 0.432; HWE test by comparing χ^2 between observed and expected genotype not significantly different, P > 0.05

b = GYPA, Observed Heterozygosity = 0.439, Expected Heterozygosity (unbiased) = 0.446; HWE test not significant, P > 0.05

c = HBGG, Observed Heterozygosity = 0.528, Expected Heterozygosity (unbiased) = 0.466; HWE test not significant, P > 0.05

d = D₂S₈, Observed Heterozygosity = 0.553, Expected Heterozygosity (unbiased) = 0.498; HWE test not significant, P > 0.05

e = GC, Observed Heterozygosity = 0.553, Expected Heterozygosity (unbiased) = 0.624; HWE test not significant, P > 0.05

at all 5 loci was 0.006364 and 0.005591 in rural and Bangkok Thais, respectively. The statistical parameters for paternity testing were computed in both Thai groups as shown in Table 3. The combined power of exclusion for trio (alleged father, mother and child) of 5 loci in the PM kit was 0.696825 for rural Thais and 0.698875 for the Bangkok Thais group. The combined PI typical of these 5 loci in both groups was < 1.0.

DISCUSSION

In vitro amplification of DNA using multiplex primers from the Amplitype® PM kit yielded 6 bands of PCR products on ethidium bromide stained agarose gel electrophoresis. The band sizes were 138 bp, 151 bp, 172 bp, 190 bp, 214 bp and 239-242 bp(13).

In both Thai population groups, the total number of 351 DNA samples did not test positive

for the C allele of the HBGG locus. Neither did the control DNA from Amplitype® kit yield the C allele on the HBGG locus. The database from different American ethnic groups(23) showed the C allele frequencies of the HBGG to be very low in Caucasian, South Eastern Hispanic and South Western Hispanic Americans (Table 4). The African American group exhibited 0.297 and 0.317, 0.097, 0.090 for C allele frequencies and AC, BC, CC genotype frequencies, respectively, at the HBGG locus. The Swiss population database(24) gave no C allele and no genotype frequencies associated with the C allele at this locus. This implies that the C allele of the HBGG locus is a rare allele with very low distribution frequencies in the Thai population.

The statistic parameters taken into consideration when searching for a marker suitable for person identification were the power of discrimination (DP) and the probability of matching (PM). The

Table 3. Statistical data related to person identification and paternity testing of PM® marker in both rural Thais and Bangkok Thais.

Statistical Parameters Locus	RURAL THAI GROUP (n = 228)							
	PIC	DP	Pm	PE _{TRIO}	PE _{DUO}	PI _{TRIO}	PI _{DUO}	PI _{TYPICAL}
- LDLR*	0.325	0.5667	0.4333	0.1625	0.0834	0.8375	0.9166	0.847
- GYPA	0.299	0.5311	0.4689	0.1495	0.067	0.8505	0.933	0.79
- HBGG	0.352	0.5998	0.4002	0.1759	0.1037	0.8241	0.8963	0.92
- D ₇ S ₈	0.362	0.6116	0.3884	0.1811	0.1128	0.8189	0.8872	0.954
- GC	0.586	0.7985	0.2015	0.3693	0.1838	0.6307	0.8162	1.415
COMBINED 5 LOCI	-	0.993636	0.006364	0.696825	0.444949	0.3031745	0.55505	0.83100
Statistical Parameters Locus	BANGKOK THAIS (n = 123)							
	- LDLR	0.338	0.5827	0.4173	0.1688	0.0925	0.8312	0.9075
- GYPA	0.346	0.5926	0.4074	0.1728	0.0988	0.8272	0.9012	0.903
- HBGG	0.356	0.6051	0.3949	0.1782	0.1077	0.8218	0.8923	0.936
- D ₇ S ₈	0.373	0.623	0.377	0.1865	0.123	0.8135	0.877	0.996
- GC	0.557	0.7791	0.2209	0.3449	0.1722	0.6551	0.8278	1.33
COMBINED 5 LOCI	-	0.9944	0.005591	0.698875	0.47021	0.301125	0.529789	0.98527

*n = 166

higher value of DP or a figure approaching 1.000000 and the lowest PM are desirable. The DP for the PM marker of 0.993636 and 0.9944 in both rural Thais and Bangkok Thais indicated that, by using this PM marker, you can differentiate definitely 9936 to 9944 men from 10,000. The remaining 64 to 56 men needed additional markers to discriminate each individual from the others. Although the efficiency of PM marker in person identification is quite good, the paternity index and probability of exclusion, PE trio are not high enough. Our study in some families has shown that each individual member of the family can be identified and discriminated from another, but two alleged men could not be sufficiently discriminated with regards to the possibility of being the true father.

The data of population genetic statistics for 5 loci of the PM Amplitype® kit of rural Thais

living near the Thai Cambodian border and the Bangkok Thais yielded almost the same values. There were no significant deviations from the Hardy-Weinberg equilibrium for all 5 loci in both groups. This indicated that person identification within a Thai population could be achieved to a certain level using the PM Amplitype® markers.

SUMMARY

A database of 228 rural Thais and 123 Bangkok Thais was established for all 5 loci of the PM Amplitype® marker, Perkin Elmer. Population genetic statistical parameters important for assessing the efficiency of these markers in terms of person identification and paternity testing were analysed and compared between these two Thai population groups. Deviation from Hardy-Weinberg was also computed.

Table 4. Comparison of allele frequencies and genotype frequencies of PM® amplotype loci in different American ethic group(23), Swiss(24) and Thai.

Allele	AFRICAN AMERICAN N = 145	CAUCASIAN AMERICAN N = 148	SOUTH EASTERN HISPANIC N = 94	SOUTH WESTERN HISPANIC N = 96	SWISS N = 100	RURAL THAI N = 228	BANGKOK THAI N = 123
^a LDLR A	0.224	0.453	0.415	0.562	0.435	0.350	0.313
B	0.776	0.547	0.585	0.438	0.565	0.650	0.687
GYPA A	0.479	0.584	0.532	0.656	0.525	0.760	0.667
B	0.521	0.416	0.468	0.344	0.475	0.240	0.333
HBGG A	0.507	0.470	0.426	0.344	0.475	0.351	0.366
B	0.197	0.524	0.548	0.609	0.525	0.649	0.634
C	0.297	0.007	0.027	0.047	0.000	0.000	0.000
D ₇ S ₈ A	0.614	0.615	0.585	0.682	0.585	0.612	0.545
B	0.386	0.385	0.415	0.318	0.415	0.388	0.455
GC A	0.103	0.257	0.277	0.271	0.280	0.217	0.171
B	0.707	0.172	0.223	0.208	0.175	0.417	0.362
C	0.190	0.517	0.500	0.521	0.545	0.366	0.467
Genotype	AFRICAN AMERICAN N = 145	CAUCASIAN AMERICAN N = 148	SOUTH EASTERN HISPANIC N = 94	SOUTH WESTERN HISPANIC N = 96	SWISS N = 100	RURAL THAI N = 228	BANGKOK THAI N = 123
^a LDLR AA	0.048	0.176	0.191	0.313	0.210	0.188	0.130
AB	0.352	0.554	0.447	0.500	0.450	0.324	0.358
BB	0.600	0.270	0.362	0.188	0.340	0.488	0.512
GYPA AA	0.228	0.351	0.330	0.448	0.240	0.548	0.448
AB	0.503	0.466	0.404	0.417	0.570	0.422	0.440
BB	0.269	0.182	0.266	0.135	0.190	0.030	0.112
HBGG AA	0.262	0.223	0.160	0.135	0.240	0.088	0.106
AB	0.172	0.493	0.521	0.365	0.470	0.526	0.528
BB	0.062	0.277	0.266	0.406	0.290	0.386	0.366
AC	0.317	0.000	0.011	0.052	0.000	0.000	0.000
BC	0.097	0.000	0.043	0.042	0.000	0.000	0.000
CC	0.090	0.007	0.000	0.000	0.000	0.000	0.000
D ₇ S ₈ AA	0.338	0.358	0.340	0.458	0.330	0.376	0.260
AB	0.552	0.514	0.489	0.448	0.510	0.474	0.552
BB	0.110	0.128	0.170	0.094	0.160	0.150	0.188
GC AA	0.014	0.054	0.053	0.083	0.070	0.030	0.048
AB	0.131	0.074	0.181	0.083	0.130	0.236	0.123
BB	0.517	0.047	0.043	0.063	0.000	0.159	0.146
AC	0.048	0.331	0.266	0.292	0.290	0.136	0.123
BC	0.248	0.176	0.181	0.208	0.220	0.280	0.308
CC	0.041	0.318	0.277	0.271	0.290	0.159	0.252

a = N = 166 FOR RURAL THAI GROUP

ACKNOWLEDGEMENT

The work was supported by Rachadapisat

Research Fund, Faculty of Medicine, Chulalongkorn University.

REFERENCES

- Jeffreys AJ, Wilson V, Thein SL. Individual-specific 'fingerprints' of human DNA. *Nature* 1985; 316: 76-9.
- Schacker U, Schneider PM, Holtkamp B, et al. Isolation of the DNA minisatellite probe MZ 1.3 and its application to DNA 'fingerprinting' analysis. *Foren Sci Int* 1990; 44: 209-44.
- Wong Z, Wilson V, Patel I, Povey S, Jeffreys AJ. Characterization of a panel of highly variable minisatellites cloned from human DNA. *Am J Hum Genet* 1987; 51: 269-88.
- Yamamoto T, Davis CG, Brown MS, et al. The human LDL receptor : a cysteine-rich protein with multiple Alu sequences in its mRNA, *Cell* 1984; 39: 27-38.
- Siebert PD, Fukuda M. Molecular cloning of human glycophorin B cDNA : nucleotide sequence and genomic relationship to glycophorin A, *Proc Natl Acad Sci USA* 1987; 84: 6735-9.
- Slightom JL, Blechl AE, Smithies O. Human fetal γ and α -globin genes complete nucleotide sequences suggest that DNA can be exchanged between these Duplicated Genes. *Cell* 1980; 21: 627-38.
- Horn GT, Richards B, Merrill JJ, Klinger KW. Characterization and rapid diagnostic analysis of DNA polymorphisms closely linked to the cystic fibrosis locus. *Clin Chem* 1990; 36: 1614-9.
- Yang F, Brune JL, Naylor SL, Cupples RL, Naberhaus KH, Bowman BH. Human group-specific component (GC) is a member of the albumin family. *Proc Natl Acad Sci USA* 1985; 82: 7994-8.
- Tahir MA, AL Khayat AQ, AL Shamali F, Budowle B, Novick GE. Distribution of HLA - DQA1 alleles in Arab and Pakistani individuals from Dubai, United Arab Emirates. *Foren Sci Int* 1997; 85: 219-23.
- Fildes N, Reynolds R. Consistency and reproducibility of Ampli Type® PM results between seven laboratories : Field trial results. *J Forensic Sci* 1995; 40: 279-86.
- Kawasaki ES. Sample preparation from blood, cells and other fluids In MA. Innis, DH. Gelfand, JJ. Sninsky and TJ. White (eds.), PCR protocol, a guide to methods and applications, pp. 146-52. New York: Academic press, 1990.
- Walsh PS, Metzger DA, Higuchi R. Chelex®-100 as a medium for simple extraction of DNA for PCR - based typing from forensic material, *Bio Techniques* 1991; 10: 506-13.
- Ampli Type® PM PCR amplification and Typing kits Part No N808-0057, Perkin Elmer.
- Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning : A laboratory Manual, (2nd ed), pp. 6-6.19. Cold Spring Harbor, NY: Cold Spring Harbor laboratory, 1989.
- Herrin G. Jr, Fildes N, Reynolds R. Evaluation of the Ampli Type® PM DNA test system on forensic case samples. *J Forensic Sci* 1994; 39: 1247-53.
- Nei M, Roychoudhury AK. Sampling variances of heterozygosity and genetic distance. *Genetics* 1974; 76: 379-90.
- Committee on DNA Technology in Forensic Science; Board on Biology; Commission on Life Sciences; and National Research Council. DNA technology in forensic science : Chapter 1, Introduction; Washington DC, National Academy Press, 1992.
- Strachan T, Read AP. Human molecular genetics : Chapter 12 : Genetic mapping, Oxford : BIOS Scientific, 1996.
- Laren MV. Investigation of the STR locus HUMTH01 using PCR and two electrophoresis formats : UK and Galician Caucasian population surveys and usefulness in paternity investigations. *Foren Sci Int* 1994; 66: 41-52.
- Jones DA. Blood samples : Probability of discrimination. *J Forensic Sci Society* 1972; 12: 355-9.
- Odelberg SJ, White R. Repetitive DNA : Molecular Structure, polymorphisms and forensic applications In : H.C. Lee and R.E. Gaensslen (eds), DNA and others polymorphism in forensic science, pp. 126-144, Chicago : Year Book Medical Publishers, 1990.
- Huston KA. Statistical analysis of STR data. *Profiles in DNA* 1998; 1: 14-5.
- Budowle B, Lindsey JA, De Con JA, Koons BW, Giusti AM, Comey CT. Validation and population studies of the loci LDLR, GYPA, HBGG, D_7S_8 and GC (PM loci), and HLA DQ α usins a multiplex amplification and typing procedure. *J Forensic Sci* 1995; 40: 45-54.
- Hochmeister MN, Budowle B, Borer UV, Dimhofer R. Swiss population data on the loci HLA DQ α , LDLR, GYPA, HBGG, D_7S_8 , GC and DIS 80. *Foren Sci Int* 1994; 67: 175-84.

ข้อมูลพันธุศาสตร์ประชากรของตำแหน่ง LDLR, GYPA, HBGG, D₇S₈ และ GC ในคนไทย เทียบกับคนไทยที่จังหวัดตราด†

ราดา สีบหลิวงศ์, พ.บ.*, นันทนา ศิริกรรพ์, พ.บ.**,
วีไล อโนมະศิริ, ปร.ด.*, อัญชลี ก่องศรีสุข, ว.ก.ม.*, ธนาศักดิ์ สีบหลิวงศ์, พ.บ.***

ก่อนที่จะนำวิธีเคราะห์ ดี เอ็น เอ 用来ใช้เพื่อพิสูจน์บุคคลและพิสูจน์ความเป็นพ่อในประชากรได้ จะต้องทำการศึกษาข้อมูลพันธุศาสตร์ประชากรในกลุ่มนี้ ได้นำการตรวจยืน 5 ตำแหน่งโดยใช้ชุด PM Amplitype® (Perkin Elmer) มาวิเคราะห์ ดี เอ็น เอ 228 ตัวอย่าง จากคนไทยที่อำเภอไทรโยค จังหวัดตราด และ 123 ตัวอย่างจากผู้ป่วยนอกฝ่ายนิติเวชศาสตร์ โรงพยาบาลจุฬาลงกรณ์ กรุงเทพฯ วิเคราะห์ชนิดอัลลิลีร์และรีโนไทพ์ของตัวอย่างเหล่านี้ หลังจากนำ PCR product ไปทำการไฮบริดิไซร์คูล์ม (hybridization) กับตีเอ็นเอตรวจสบจำเพาะตามวิธีของผู้ผลิตชุดนี้ฯ คำนวณค่าสถิติพันธุศาสตร์ประชากร เช่น DP (Discrimination power), Pm (Probability of matching), PE trio (Probability of exclusion, trio), PI typical (Paternity index, typical) อีกทั้งความเบี่ยงเบนจาก Hardy-Weinberg (HWE) จากการศึกษาไม่พบความเบี่ยงเบนจาก HWE ในประชากรไทยทั้งสองกลุ่ม ($P > 0.05$) ค่า DP combined เท่ากับ 0.993636 ในกลุ่มคนไทยที่จังหวัดตราด และ 0.9944 ในคนไทยที่จังหวัดตราด ค่า Pm combined สำหรับคนไทยที่จังหวัดตราดและคนไทยที่จังหวัดกรุงเทพฯ เป็น 0.006364 และ 0.005591 ตามลำดับ ส่วนค่า combined PE trio ในทั้งสองกลุ่มเป็น 0.696825 และ 0.698875 และ combined PI typical น้อยกว่า 1

สรุปการพิสูจน์บุคคลโดยตรวจวิเคราะห์ ดี เอ็น เอ 5 ตำแหน่งของชุด PM Amplitype® DNA markers ได้ผลเป็นที่พ่อใจในระดับหนึ่ง ส่วนการที่จะนำวิธีดังกล่าวมาใช้พิสูจน์ พ่อลูก ควรต้องพิจารณาอย่างระมัดระวังและควรใช้ร่วมกับการตรวจอื่น

คำสำคัญ : พีเอ็ม مار์เกอร์, ข้อมูลประชากรพันธุศาสตร์, ข้อมูลดีเอ็นเอในคนไทย, ดีเอ็นเอ مار์เกอร์

* ภาควิชาชีวเคมี,

** ภาควิชาเนิติเวชศาสตร์

*** ภาควิชาสูติศาสตร์-นรีเวชวิทยา, คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ 10330

† ทุนวิจัยรัชดาภิเษกสมโภช คณะแพทยศาสตร์