

Poor Physical Fitness of Adolescents with Mental Retardation at Rajanukul School, Bangkok

DOOTCHAI CHAIWANICH SIRI, M.D.*,
SOMPOL SANGUANRUNGSIRIKUL, M.D.**,
WUTTI PORN SUWANNAKUL, B.Sc. (Sports Science)**

Abstract

Objective. To study the physical condition of adolescents with mild to moderate mental retardation (MR), twenty-eight MR students from Rajanukul school were evaluated for their fitness components compared to 14 normal students.

Method. Per cent body fat (%BF) was calculated from three sites of skinfold thickness. The cardiorespiratory endurance was assessed using graded exercise testing and Quinton gas analyzer. Isometric leg strength was measured with dynamometer, and flexibility was measured by sit and reach test.

Results. Compared between MR and normal subjects, %BF was higher in the MR group without statistic significance. Five MR females had %BF > 30. The mean VO₂peak was about 70 per cent of normal. The leg strength and flexibility were very poor.

Conclusion. The MR adolescents had a significantly lower level of physical fitness and more prevalence of obesity than normal students. Appropriate physical activities should be emphasized for health promotion and disease prevention.

Key word : Physical Fitness, Mental Retardation, Cardiorespiratory Endurance, Exercise Testing

CHAIWANICH SIRI D, SANGUANRUNGSIRIKUL S, SUWANNAKUL W
J Med Assoc Thai 2000; 83: 1387-1392

* Department of Rehabilitation Medicine, Faculty of Medicine, Chulalongkorn University,

** Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Adequate physical activity is recognized as an essential requirement for good health(1,2). The impacts of physical inactivity include obesity, hypercholesterolemia, hypertension, and hyperinsulinemia, are known as major risk factors of coronary artery disease and stroke(2-4). Since the incubation period of atherosclerosis begins during the early years of childhood, disease prevention should be emphasized starting from within the family and the school(5-7).

Mentally retarded individuals are born with cognitive and behavioral deficits. They are usually separated from society for reasons of safety and cultural beliefs. This, along with their inactive behavior results in a low level of physical performance and puts them at risk(8-11). The purpose of this study was to evaluate the components of health related physical fitness of adolescent students with mental retardation (MR). The results will be useful in future plans for health promotion, disease prevention, and quality of life improvement in this group.

MATERIAL AND METHOD

A cross sectional analytical study was performed at the exercise laboratory in the Department of Physiology, Faculty of Medicine, Chulalongkorn University from July to September 1999. Twenty-eight mild to moderately mentally retarded students without physical disability, aged 15-18 years from Rajanukul School, Department of Mental Health, Bangkok, were enrolled into the study. They had been physically examined to assure that there were no contraindications for entry into exercise testing. Fourteen sedentary normal students with the same socioeconomic status from Wimuttarapitayakorn School volunteered to be the control group. All subjects were willing to be tested and had their parents' informed consent. Four components of health related physical fitness(12) were assessed as follows:

1) Body composition. Body mass index (BMI) was calculated as (body weight in kg)/(height in meter)². Per cent of body fat (%BF) was calculated from skin fold thickness at the triceps, subscapula, and abdominal regions(13).

2) Cardiorespiratory fitness. Cardiorespiratory function was evaluated by using Fernhall *et al*'s treadmill walking protocol(14), which used a constant speed of 4.8 km/hour, starting at 0 percent grade for 2 minutes, followed by 2.5 per cent

grade for 2 minutes, and then increased by 2.5 percent every minute until exhaustion. During the test, electrocardiographs were obtained *via* Quinton 4500 ECG monitoring, and metabolic data were collected using Quinton metabolic cart breath by breath gas analyzer. The parameters recorded were; peak oxygen consumption (VO₂peak), maximum heart rate (HR_{max}), exercise time, minute ventilation (VE), and respiratory exchange ratio (RER = VCO₂/VO₂).

3) Muscular strength. Isometric leg strength was measured by using a strength dynamometer (TKK 5102), performed three times and the highest force obtained was recorded in kilograms.

4) Flexibility. Flexibility of the back was evaluated using the sit and reach test, performed three times, and the best result was recorded in centimeters.

The data were analyzed with program SPSS for Windows version 9.0. Distributions of data were tested with a histogram and a probability plot. The descriptive results were reported in mean \pm SD; unpaired *t*-test and Pearson correlation test were used where appropriate, with 95 per cent confidence interval and significance set at $P \leq 0.01$.

RESULTS

Every subject in the normal and MR group completed the tests. General data of both groups is shown in Table 1. The mean age and BMI of both groups were not different, but subjects whose BMI was more than 27 kg/m² were found more frequently in the MR group. There were 5 MR subjects who had %BF more than 30, and all were female.

Table 2 shows comparison of the parameters representing fitness components between MR and normal subjects. The MR group had a significantly lower level of fitness in all areas except for %BF.

Table 3 displays differences between MR and normal subjects for both sexes. Mentally retarded males had lower value of all parameters except %BF compared to the controls. But MR females differed from normal females only in HR_{max}, exercise time and leg strength. Compared between sexes, the MR females had higher %BF and flexibility than MR males.

It was also found that the VO₂peak had weak negative correlation with %BF ($r = -0.47$ at $p = 0.01$), and positive correlation with IQ ($r = 0.54$ at $p = 0.01$).

Table 1. General data and descriptive characteristics ($X \pm SD$).

		MR (n = 28)	Normal (n = 14)
Age	(yr.)	16.2 \pm 0.7	16.5 \pm 0.9
Sex	(M:F)	14 : 14	7 : 7
Down syndrome	(M:F)	7 : 2	0
IQ		43 \pm 7	normal
Weight	(kg)	57 \pm 14	55 \pm 10
Height	(m)	1.57 \pm 0.1	1.61 \pm 0.8
BMI	(kg/m ²)	23 \pm 4	21 \pm 3
BMI > 27 kg/m ²	(n)	8/28	1/14
%Body fat > 30	(n)	5/28	0

Table 2. Comparison of physical fitness components ($X \pm SD$) between MR and normal subjects.

	Variable	MR	Normal
Body fat	(%)	20.6 \pm 9.4	16.0 \pm 7.2
VO2peak	(ml/kg/min)	24.5 \pm 5.8 *	35.1 \pm 10.7
HRmax	(bpm)	153.5 \pm 15.7 *	184.7 \pm 6.3
VE	(l/min)	47.1 \pm 14.4 *	62.2 \pm 20.9
Exercise time	(min)	6.6 \pm 3.5 *	15.6 \pm 4.0
Leg strength	(kg)	40.1 \pm 17*	109.4 \pm 42.4
Flexibility	(cm)	-2.4 \pm 11*	9.6 \pm 5.8

* significantly different at $p < 0.001$ **Table 3. Fitness components ($X \pm SD$) of MR and normal subjects showed in different sex.**

Variables	Male		Female		
	MR	Normal	MR	Normal	
Body fat	(%)	17.1 \pm 7	12.3 \pm 2	24.2 \pm 9 **	19.7 \pm 5
VO2peak	(ml/kg/min)	25.0 \pm 5 *	44.5 \pm 6	23.9 \pm 6	25.6 \pm 1
HRmax	(bpm)	158.7 \pm 14 *	186.7 \pm 7	148.7 \pm 15 *	182.7 \pm 5
VE	(l/min)	49.9 \pm 12 *	80.9 \pm 9	44.4 \pm 15	43.5 \pm 6
Exercise time	(min)	7.1 \pm 3 *	19.1 \pm 1	6.1 \pm 3 *	12.1 \pm 1
Leg strength	(kg)	45.3 \pm 15 *	149.0 \pm 13	34.9 \pm 17*	69.9 \pm 8
Flexibility	(cm)	-7.0 \pm 2 *	11.0 \pm 2	2.1 \pm 11 **	8.2 \pm 5

* significantly lower than normal subjects at $p < 0.001$ ** significantly higher than MR males at $p < 0.05$

DISCUSSION

The recruited MR and normal students had been matched for age, sex, and socioeconomic status. The mean BMI and %BF of both groups were not significantly different. But when a BMI of > 27 kg/m² was considered as a cut-off point of cardiovascular risk(3,12), the MR group had 4 times more risk than the normal group (8/28 vs 1/14). Five of 28 (18%) MR subjects had %BF greater than 30, which was about 1/3 of MR females. These findings agreed with studies reported by Rimmer et al(14), Fernhall et al(15), and Rubbin et al(16), that the incidence of overweight and obesity are high among adults with MR, and highest in MR females.

In evaluation of the cardiorespiratory function of an individual with mental retardation, the test reliability is mostly dependent on subject motivation. Fernhall et al(17,18) demonstrated the feasibility and reliability of laboratory maximal exercise testing in mild to moderate MR subjects. The criteria employed to evaluate the state of maximal exercise are: 1) a plateau in VO2 where the

work load is increased, 2) no increase in HR during an increase in work load, and 3) a RER value greater than 1.0(19,20). In the present study, we used Fernhall's treadmill walking protocol which enabled the subjects to become familiar with the instruments, machines, and the laboratory, and allowed them to practice until they had confidence and motivation before being tested. All subjects were tested to volitional exhaustion, 73 percent of them achieved an RER > 1.0 (mean RER = 1.05), but not all of them reached the plateau VO2. Therefore, the highest VO2 obtained from the test was reported as "VO2 peak"(9,10,21) instead of "VO2 max".

All variables collected from the cardiorespiratory function test were significantly lower in the MR group. The mean VO2 peak was 24.5 ml/kg/min, approximately 70 per cent that of the control group. This value is lower than that previously reported, in which VO2 peak/max was about 28 to 35 ml/kg/min(8,15,17,18,22-27). This may be due to the younger age and lower IQ of the

subjects in this study. It was also demonstrated that MR individuals with Down syndrome (DS) had lower cardiorespiratory fitness compared to non-DS(22). This study included 9-DS subjects (7 males, 2 females) in the analysis, which could have affected the mean VO₂ peak value, even though there was no significant difference between the DS and non-DS group. The mean HRmax of 153 bpm was about 83 per cent that of the control group. This could be explained by a poor chronotropic responsiveness to exercise(17). When sex differences were analyzed, MR males showed all variables of cardiorespiratory function lower than normal subjects, but MR females were different from normal females only in HRmax, and exercise time. This reflected the low level of cardiorespiratory fitness of the normal female students (M vs F = 44.5 vs 25.6 ml/kg/min).

The correlation between IQ and VO₂ peak supports the hypothesis of sedentary life style among MR populations. The negative correlation between VO₂ peak and %BF indicates the adverse impact of deteriorating physical condition upon body composition and vice versa.

Research on muscle strength has been of interest since the last decade. Muscle strength and flexibility are important in self-care activities, recreation, and work. Adequate muscle strength also helps increase daily energy expenditure, which is useful in weight control. Pitetti *et al*(28), Croce *et al*(29), and Horvat(30) reported isokinetic

strength of adults with DS that was about 30-45 per cent of normal, and about 50-60 per cent of normal in non-DS MR. The MR adolescents in our study had isometric strength of only 36 per cent of normal, and the flexibility measured was very poor, especially in males. The poor muscular strength may have been another reason that caused some subjects to terminate their graded exercise tests. These subjects would probably have been limited by muscular fatigue (peripheral factor) rather than cardiovascular function (central factor).

Initial reports have been mainly concerned with exercise programs aimed to improve aerobic capacity in MR individuals(15,23,24), and few studies have been designed to improve muscle strength(31). From the findings of our study, it is essential to provide programs for improving every component of physical fitness in MR populations.

SUMMARY

The MR adolescents in Rajanukul School had a lower level of aerobic capacity, muscle strength, and flexibility compared to normal students. More prevalence of obesity was found among MR females. These most likely resulted from their inactive behavior and inadequately assigned physical activity. Appropriate exercise and recreational programs should be emphasized to improve the functional capacity of this group and to prevent concurrent diseases.

(Received for publication on August 15, 2000)

REFERENCES

1. Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality: a prospective study of healthy men and women. *JAMA* 1989; 262: 2395-401.
2. Pate RR, Pratt M, Blair SN, *et al*. Physical activity and public health: A recommendation from the centers for disease control and prevention and the American College of Sports Medicine. *JAMA* 1995;273:402-7.
3. Zafari AM, Wenger NK. Secondary prevention of coronary heart disease. *Arch Phys Med Rehabil* 1998;79:1006-17.
4. Fletcher GF, Balady G, Blair SN, *et al*. Statement on exercise: Benefits and recommendations for physical activity programs for all Americans. *Circulation* 1996;94:857-62.
5. Dennison BA, Straus JH, Mellits ED, Charney E. Childhood physical fitness test: predictor of adult physical activity levels? *Pediatrics* 1988;82:324-30.
6. Rossner S. Childhood obesity and adulthood consequences. *Acta Paediatr* 1998;87:1-5.
7. Grundy SM, Blackburn G, Higgins M, Lauer R, Perri MG, Ryan D. Physical activity in the prevention and treatment of obesity and its comorbidities: evidence report of independent panel to assess the role of physical activity in the treatment of obesity and its comorbidities. *Med Sci Sports Exerc*. 1999;31:1493-500.
8. Fernhall B, Pitetti KH, Rimmer JH, *et al*. Cardiorespiratory capacity of individuals with mental

retardation including Down syndrome. *Med Sci Sports Exerc* 1996;28:366-71.

9. Pitetti KH, Campbell KD. mentally retarded individuals- A population at risk ? *Med Sci Sports Exerc* 1991; 23:586-93.

10. Pitetti KH, Rimmer JH, Fernhall B. Physical fitness and adults with mental retardation: An overview of current research and future directions. *Sports Medicine* 1993;16:23-56.

11. Rimmer JH, Braddock D, Fujiura G. Cardiovascular risk factor levels in adults with mental retardation. *Am J Ment Retard* 1994;98:510-8.

12. American College of Sports Medicine. Guidelines for exercise testing and prescription. 4th ed. Philadelphia: Lea & Febiger, 1991:1-314.

13. Robergs RA, Roberts SO. Exercise physiology: exercise, performance, and clinical applications. St Louis: Mosby, 1997:520-44.

14. Rimmer JH, Braddock D, Fujiura G. Prevalence of obesity in adults with mental retardation: implications for health promotion and disease prevention. *Ment Retard* 1993;31:105-10.

15. Fernhall B. Physical fitness and exercie training of individuals with mental retardation. *Med Sci Sports Exerc* 1993;25:442-50.

16. Rubin SS, Rimmer JH, Chicoine B, Braddock D, McGuire DE. Overweight prevalence in person with Down syndrome. *Ment Retard* 1998;36: 175-81.

17. Fernhall B, Tymeson GT. Graded exercise testing of mentally retarded adults: A study of feasibility. *Arch Phys Med Rehabil* 1987;68:363-5

18. Fernhall B, Millar AL, Tymeson GT, Burkett LN. Maximal exercise testing of mentally retarded adolescents and adults: Reliability study. *Arch Phys Med Rehabil* 1990;71:1065-8.

19. Astrand PO, Rodahl K. Textbook of work physiology: physiological bases of exercise. 3rd ed. New York: Mc-Graw- Hill, 1986:1-756.

20. Robergs RA, Roberts SO. Exercise physiology: exercise, performance, and clinical applications. St Louis: Mosby,1997:480-503.

21. Rowland TW. Does peak VO₂ reflect VO_{2max} in children ?: Evidence from supramaximal testing. *Med Sci Sports Exerc* 1993;25:689-93.

22. Pitetti KH, Climstein M, Campbell KD, Barrett PJ, Jackson JA. The cardiovascular capacities of adults with Down syndrome: a comparative study. *Med Sci Sports Exerc* 1992;24:13-9.

23. Pitetti KH, Tan DM. Effects of a minimally supervised exercise program for mentally retarded adults. *Med Sci Sports Exerc* 1991;23:594-601.

24. Millar AL, Fernhall B, Burkett LN. Effects of aerobic training in adolescents with Down syndrome. *Med Sci Sports Exerc* 1993;25:270-4.

25. Pitetti KH, Tan DM. Cardiorespiratory responses of mentally retarded adults to air-brake ergometry and treadmill exercise. *Arch Phys Med Rehabil*. 1990;71:318-21.

26. Rintala P, Dunn JM, McCubbin JA, Quinn C. Validity of a cardiorespiratory fitness test for men with mental retardation. *Med Sci Sports Exerc* 1992; 24:941-5.

27. Draheim CC, Laurie NE, McCubbin JA, Perkina JL. Validity of a modified aerobic fitness test for adults with mental retardation. *Med Sci Sports Exerc* 1999;31:1849-54.

28. Pitetti KH, Climstein M, Mays MJ, Barrett PJ. Isokinetic arm and leg strength of adults with Down syndrome: A comparative study. *Arch Phys Med Rehabil* 1992;73:847-50.

29. Croce RV, Pitetti KH, Horvat M, Miller J. Peak torque, average power, and Hamstrings/Quadriceps ratios in nondisabled adults and adults with mental retardation. *Arch Phys Med Rehabil* 1996; 77:369-72.

30. Horvat M. Isokinetic torque, average power, and flexion/extention ratios in nondisabled adults and adults with mental retardation. *JOSPT* 1997;25: 395-9.

31. Suomi R. Self directed training: Its effect on leg strength in men with mental retardation. *Arch Phys Med Rehabil* 1998;79:323-8.

ความบกพร่องของสมรรถภาพทางกายของเด็กปัญหาอ่อนที่โรงเรียนราชานุกูล กรุงเทพมหานคร

ฤ娟 ชัยวนิชศิริ, พ.บ.*, สมพล สงวนรังศิริกุล, พ.บ.**,
ุณิพร สุวรรณกุล, วท.บ. (วิทยาศาสตร์การกีฬา)**

ศึกษาสมรรถภาพทางกายของเด็กนักเรียนปัญหาอ่อนจากโรงเรียนราชานุกูล จำนวน 28 คน เปรียบเทียบกับนักเรียนปกติ 14 คน โดยค่าなんค่าร้อยละของไขมันจากความหนาของไขมันได้ผิวนังสามแห่ง ประเมินสมรรถภาพของหัวใจและปอดโดยการทดสอบออกกำลังกายด้วยสูวิ่งสายพานและเครื่องวิเคราะห์กีฬา ประเมินความแข็งแรงของกล้ามเนื้อขาด้วยไดนาโมมิเตอร์ วัดความยืดหยุ่นโดยการเหยียดมือและปลายเท้าในท่านั่ง

ผลการศึกษา พบค่าเฉลี่ยค่าร้อยละของไขมันในเด็กปัญญาอ่อนสูงกว่าเด็กปกติอย่างไม่มีนัยสำคัญ แต่พบว่ามีเด็กปัญญาอ่อน 5 คนมีไขมันมากกว่าร้อยละ 30 ค่าเฉลี่ยการใช้ออกซิเจนสูงสุกของเด็กปัญญาอ่อนเท่ากับร้อยละ 70 ของเด็กปกติ ความแข็งแรงของขาและความยืดหยุ่นมีค่าต่ำมาก

สรุป เด็กปัญญาอ่อนมีสมรรถภาพทางกายต่ำและมีภาวะอ้วนมากกว่าเด็กปกติ ควรให้โปรแกรมส่งเสริมที่เหมาะสม

คำสำคัญ : สมรรถภาพทางกาย, ปัญญาอ่อน, สมรรถภาพหัวใจและปอด, การทดสอบออกกำลังกาย

ฤ娟 ชัยวนิชศิริ, สมพล สงวนรังศิริกุล, ุณิพร สุวรรณกุล

จตุหกษาเทศบาลพทฯ ๒๕๔๓; ๘๓: 1387-1392

* ภาควิชาเวชศาสตร์พื้นบุรี

** ภาควิชาสรีรวิทยา, คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ ๑๐๓๓๐