

Hallervorden-Spatz Syndrome in Two Siblings Diagnosed by Clinical Features and Magnetic Resonance Imaging

SOMSAK TIAMKAO, M.D.*,
BENJAPORN NITINAVAKARN, M.D.**,
SUTHIPUN JITPIMOLMARD, M.D., D.C.N. (Lond.)*

Abstract

The Hallervorden-Spatz syndrome (HSS) is a rare condition characterized by extrapyramidal and pyramidal signs, dystonia, dysarthria, retinal degeneration, dementia and a progressive course. The development of magnetic resonance imaging (MRI) has increased the number of clinical and pathological reports of HSS. MRI pallidal abnormalities are called "eye of the tiger" signs. The combination of clinical features and MRI findings can be considered as highly suggestive of a diagnosis of HSS.

Patient 1 was a 28 year old man who had been well until the age of 25 years. He developed dysarthria, difficulty with his gait and dystonia in his arms at the age of 28 years. Patient 2 was a 33 year old man who was the older brother of the first patient. He developed gait difficulty, tongue dystonia and dystonia of both arms at the age of 25 years. Each patient had spastic gait, dysarthria, dystonic posturing of both arms and generalized hyperreflexia, but no Kayser-Fleischer rings or retinitis pigmentosa. Blood chemistry, urine copper, serum copper and serum ceruloplasmin were all normal. MRI of the brain showed the "eye of the tiger" sign in the globus pallidus on T2 - weighted images.

These siblings had clinical features and MRI findings consistent with HSS. They are the first to be reported in Thailand.

Key word : Hallervorden - Spatz Syndrome, Eye of the Tiger, MRI

TIAMKAO S, NITINAVAKARN B, JITPIMOLMARD S
J Med Assoc Thai 2000; 83: 1535-1540

* Department of Medicine,

** Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

The Hallervorden-Spatz syndrome (HSS) is a rare condition, which is most often transmitted as an autosomal recessive trait. Its clinical manifestations usually occur during the first two decades of life⁽¹⁾. The HSS is characterized by extrapyramidal and pyramidal signs, dystonia, dysarthria, retinal degeneration and dementia, and it has a progressive course⁽²⁾. Although ferrokinetic studies have demonstrated iron storage in the basal ganglia of a patient affected by HSS, to date no diagnostic biochemical test is available^(3,4). The diagnosis of HSS is made on clinical grounds and confirmed by characteristic neuropathological findings⁽³⁾. Magnetic resonance imaging (MRI) of pallidal abnormalities consist of decreased signal intensity in T2-weighted images, compatible with iron deposition, and a small area of hyperintensity in its internal segment ("eye of the tiger" sign)⁽⁵⁻⁷⁾. Angelini *et al* proposed that the combination of neurological signs and MRI findings can be considered as highly suggestive of HSS⁽⁸⁾.

CASE REPORTS

Patient 1 was a 28 year old man who was the second son of non-consanguineous parents. He had one younger brother and one older brother. He was born at full-term after a normal pregnancy. The delivery was uncomplicated. The patient had been well until the age of 25 years old, when he developed dysarthria. In the following year, he began to have difficulty with his gait which was associated with rigidity of both legs. At the age of 28, he developed dystonic posturing of both arms. His father and mother had no history of neurological or hepatobililiary disease, but his older brother also suffered from HSS. The neurological examination revealed a spastic gait, dysarthria, limitation of lateral gaze, slow finger movements, dystonic posturing of both arms and generalized hyperreflexia. There were no Kayser-Fleischer (K-F) rings, cogwheel rigidity, cerebellar signs or retinitis pigmentosa. The patient's mood and personality were normal. Blood chemistry, complete blood count, plasma glucose, renal function, liver function, urine copper, serum copper and serum ceruloplasmin were all normal. MRI of the brain performed on a 1.5 T showed bilateral symmetrical pallidal hypointensity peripherally, hyperintensity centrally and "eye of the tiger" in T2-weighted images (Fig. 1A).

Patient 2 was a 33 year old man. He is the older brother of the first patient. The pregnancy and

delivery were unremarkable. The patient's development was normal and he was in a good health until the age of 25 years old when he developed difficulty with his gait. Three years later, he developed progressive difficulty with his speech because of tongue dystonia. Over the following 2 years, a marked dystonic posturing of the arms became evident and his speech difficulty increased. Neurological examination revealed a spastic gait, marked oromandibular dystonia which was evident when speaking, severe dysarthria, dystonic posturing of the arms and generalized hyperreflexia. There were no K-F rings, cerebellar signs or retinitis pigmentosa. The patient's mood and personality were normal.

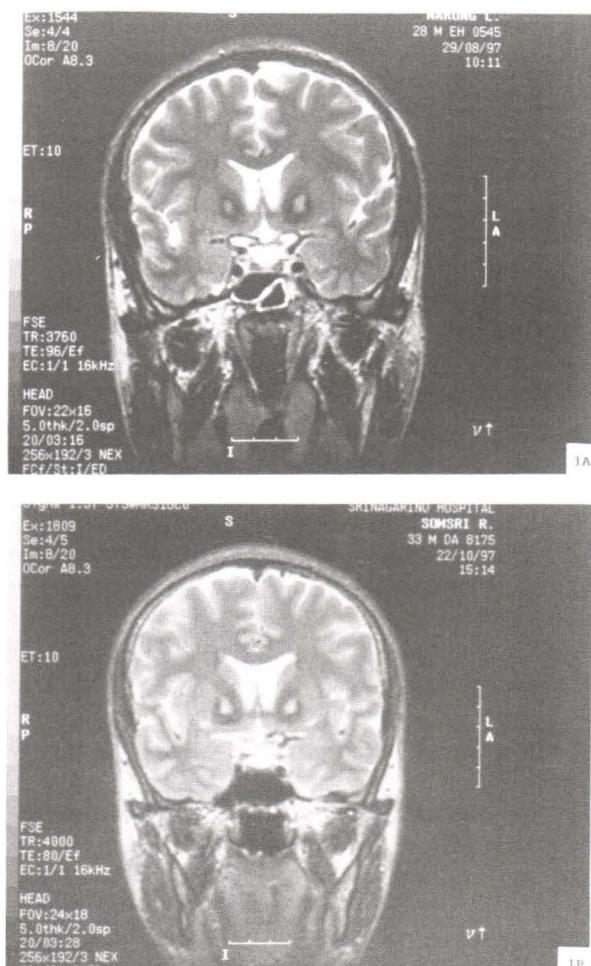


Fig. 1A, B. Coronal T2W image showed bilateral symmetrical pallidal hypointensity peripherally, hyperintensity centrally (eye of the tiger).

mal. Blood chemistry, urine copper, serum copper and serum ceruloplasmin were normal. MRI of the brain showed an "eye of the tiger" sign in the globus pallidus on T2-weighted images (Fig. 1B).

DISCUSSION

The syndrome was described by Hallervorden and Spatz in 1922(9). The massive iron deposition in the globus pallidus and substantia nigra, autosomal recessive genetic transmission, and clinical manifestations distinguish this syndrome from other neurodegenerative and extrapyramidal diseases⁽¹⁾. The pathogenesis of HSS remains unknown. The comparatively high concentrations of iron in the globus pallidus, the pars reticulata of the substantia nigra, and a few other brain areas are well recognized in the normal brain⁽¹⁰⁾. Iron is deposited in pathologically high concentrations in the brain in several central nervous system degenerative diseases, particularly HSS^(9,11-13), Parkinson's

disease⁽¹⁴⁾, Alzheimer's disease⁽¹⁵⁾, and Pick's disease⁽¹⁶⁾. In 1991 Swaiman proposed diagnostic criteria for the diagnosis of HSS⁽¹⁾. All of the obligatory findings and at least two corroborative findings should be present (Table 1). None of the exclusion factors should be present (Table 2).

All of the obligatory features proposed by Swaiman were present in our patients. Corroborative features were also present; they included corticospinal tract involvement, a positive family history consistent with autosomal recessive inheritance, and hypodense areas involving the globus pallidus on MRI. There were no exclusion features. Thus our two patients met the criteria for the diagnosis of HSS, as proposed by Swaiman.

Literature review by Med-line from 1966 to 1997 revealed 144 cases of HSS. Of these 144 cases, only 11 were reported from Asian countries (5 from Japan, 2 from Korea, 2 from Taiwan, 1 from China, and 1 from India)⁽¹⁷⁻²⁶⁾. The clinical find-

Table 1. Diagnostic criteria, obligatory features and corroborative features.

Obligatory features	Corroborative features
<ol style="list-style-type: none"> 1. Onset during the first two decades of life. 2. Progression of signs and symptoms. 3. Extrapyramidal dysfunction ; dystonia, rigidity, choreoathetosis. 	<ol style="list-style-type: none"> 1. Corticospinal tract involvement. 2. Progressive intellectual impairment. 3. Retinitis pigmentosa. 4. Optic atrophy. 5. Seizures. 6. Family history consistent with autosomal recessive inheritance. 7. Hypodense areas on MRI involving the basal ganglia, particularly the substantia nigra. 8. Abnormal cytosomes in circulating lymphocytes and/or sea-blue histiocytes in bone marrow.

Table 2. Diagnostic criteria, exclusion features.

Exclusion features
<ol style="list-style-type: none"> 1. Abnormal ceruloplasmin levels and/or abnormalities in copper metabolism. 2. Overt neuronal ceroid-lipofuscinosis as demonstrated by severe visual impairment and/or difficult controlling seizures which are often generalized. 3. Predominant epileptic symptoms. 4. Severe retinal degeneration or visual impairment preceding other symptoms. 5. A familial history of Huntington's chorea and/or other autosomal dominant neuromovement disorder. 6. Caudate atrophy demonstrated by imaging studies. 7. Deficiency of hexosaminidase A. 8. Deficiency of GM₁-galactosidase. 9. Non progressive course. 10. Absence of extrapyramidal signs.

ings of 8 cases from Asia are shown in Table 3. Strikingly, the number of cases reported increased after 1986 when a combination of clinical features and MRI findings, instead of autopsy findings, were required for the diagnosis. Thirty six and 88 cases of HSS were reported between 1966 and 1986, and 1987 and 1997, respectively.

Halliday has recently proposed a classification of HSS, which he divided into 6 groups(27). The first group is HSS associated with a pediatric neurodegenerative disorder, which was described by Hallervorden and Spatz. The first reported family had 12 children. Five of them, all girls, developed the same neurodegenerative condition between the ages of 7 and 9 years. The second group is HSS associated with neurofibrillary tangles;(28,29) the third HSS associated with acanthocytosis;(3,30-35) the fourth HSS associated with degenerative neuronal changes;(2,29,36-39) the fifth HSS associated with central nervous system malformations;(40) and the sixth a group with an adult onset(41,42). It would be rational to reserve the term Hallervorden-Spatz disease for the pediatric cases, and the re-

mainder to be called the Hallervorden-Spatz syndrome(27).

There is no specific treatment for HSS. Attempts have been made to remove the excess iron deposits from the brain by using desferrioxamine, but this lead to no clinical improvement or decreased iron storage in the brain. Symptomatic treatment often proves helpful. The most common movement disorder is dystonia. Therapy with levodopa or carbidopa may be effective. Our two patients were treated with levodopa. Patient 1 improved clinically. Patient 2 showed no improvement with levodopa, but improved with trihexyphenidyl.

SUMMARY

This report emphasizes that the antemortem diagnosis of HSS can be made by a combination of clinical features and MRI results. Suggestive signs include insidious walking difficulties, progressive oromandibular dystonia and clinical signs of corticospinal tract involvement. The MRI findings are very helpful for the premortem diagnosis of HSS.

(Received for publication on January 4, 1999)

REFERENCES

1. Swaiman KF. Hallervorden-Spatz syndrome and brain iron metabolism. *Arch Neurol* 1991;48: 1285-93.
2. Dooling EC, Schoene WC, Richardson EP. Hallervorden-Spatz syndrome. *Arch Neurol* 1974;30: 70-83.
3. Tanfani G, Mascalchi M, Dal Pozzo GC, et al. MR imaging in a case of Hallervorden-Spatz disease. *J Comput Assist Tomogr* 1987;11:1057-8.
4. Galluci M, Cardona F, Arachi M, et al. Follow-up MR studies in Hallervorden-Spatz disease. *J Comput Assist Tomogr* 1990;14:118-20.
5. Rutledge JN, Hilal SK, Silver AJ, et al. Study of movement disorder and brain iron by magnetic resonance. *Am J Roentgenol* 1987;149:365-79.
6. Sethi KD, Adams RJ, Loring DW, et al. Hallervorden-Spatz syndrome : clinical and magnetic resonance imaging correlations. *Ann Neurol* 1988; 24:692-4.
7. Schaffert DA, Johnsen SD, Johnson PC, et al. Magnetic resonance imaging in pathologically proven Hallervorden-Spatz disease. *Neurology* 1989;39:440-2.
8. Angelini L, Nardocci N, Rumi V, et al. Hallervorden-Spatz disease : clinical and MRI study of 11 cases diagnosed in life. *J Neurol* 1992;239:417-25.
9. Hallervorden J, Spatz H. Eigenartige erkrankung im extrapyramidalen system mit besonderer beteiligung des globus pallidus und der substantia nigra. *Z Ges Neurol Psychiatr* 1922;79:254-302.
10. Hallgren B, Sourander P. The effect of age on the non haemin iron in the human brain. *J Neurochem* 1958;3:47-51.
11. Hallervorden J. Über eine familiare erkrankung im extrapyramidalen system. *Dtsch Z Nervenheilkd* 1924;81:204-10.
12. Szanto J, Gallyas F. A study of iron metabolism in neuropsychiatric patient : Hallervorden-Spatz disease. *Arch Neurol* 1966;14:438-42.
13. Swaiman KF, Smith SA, Trock GL, et al. Sea-blue histiocytes, lymphocytic cytosomes, an⁵⁹ Fe-studies in Hallervorden-Spatz syndrome. *Neurology* 1983;33:301-5.
14. Yousdim MB, Ben Shachar D, Riederer P. Is Parkinson's disease a progressive siderosis of sub-

stantia nigra resulting in iron and melanin induced neurodegeneration. *Acta Neurol Scand* 1989; 126 (Suppl):47-54.

15. Goodman L. Alzheimer's disease : a clinicopathologic analysis of twenty-three cases with a theory on pathogenesis. *J Nerv Ment Dis* 1953;118:97-130.

16. Akelaitis AJ. Atrophy of basal ganglia in Pick's disease. *Arch Neurol Psychiatry* 1944;51:27-34.

17. Tabuchi M, Mori E, Yamadori A. The role of magnetic resonance imaging in the diagnosis of Hallervorden Spatz disease. *Rinsho Shinkeigaku* 1990;30:972-7.

18. Wang LN, Huang KW, Liu Zy. Sporadic late onset Hallervorden Spatz disease presenting as parkinsonism in a Chinese patient. *Chin Med J Engl* 1990;103:686-8.

19. Yamada T. A case of Hallervorden Spatz syndrome : clinical course and successive findings of brain CT. *No To Hattatsu* 1991;23:628-30.

20. Kim DW, Choi Y, Kim KJ, et al. Hallervorden Spatz syndrome in two siblings diagnosed by the clinical features and magnetic resonance imaging. *J Korean Med Sci* 1993;8:329-33.

21. Sodeyama N, Arai M, Sanjoh N, et al. A case of Hallervorden Spatz syndrome with marked atrophy of the brainstem and cerebellum. *Rinsho Shinkeigaku* 1993;33:525-9.

22. Kaushik A, Longia S, Jagadeesh R, et al. Hallervorden Spatz disease. *India Pediatr* 1995;32:483-5.

23. Nagaoka M, Nakamura N, Yamamura A, et al. A 75 year old man with parkinsonism and sudden death. *No To Shinkei* 1995;47:1199-208.

24. Okano S, Takeuchi Y, Kohmura E, et al. Globus pallidus calcification in Down syndrome with progressive neurologic deficits. *Pediatr Neurol* 1992;8: 72-4.

25. Thajeb P. A case report of Hallervorden-Spatz syndrome diagnosed antemortemly. *Chin Med J Engl* 1993;106: 153-6.

26. Ou SF, Chi CS, Shian WJ, et al. Clinical and MRI study of the Hallervorden-Spatz syndrome: long term follow-up of one case. *Acta Paed Sin* 1994; 35: 339-43.

27. Halliday W. The nosology of Hallervorden-Spatz disease. *J Neurol Sci* 1995;134:84-91.

28. Hartmann HA, White SK, Levine RL. Neuroaxonal dystrophy with neuromelanin deposition, neurofibrillary tangles, and neuronal loss. *Acta Neuropathol* 1983;61:169-72.

29. Eidelberg D, Sotrel A, Joachim C, et al. Adult onset Hallervorden-Spatz disease with neurofibrillary pathology. *Brain* 1987;110:993-1013.

30. Roth AM, Helper RS, Mukoyama M, et al. Pigmentary retinal dystrophy in Hallervorden-Spatz disease. *Surv Ophthalmol* 1971;16:24-35.

31. Swisher CN, Menkes JH, Cancilla PA, et al. Coexistence of Hallervorden-Spatz disease with acanthocytosis. *Trans Am Neurol Assoc* 1972;97: 212-6.

32. Luckenbach MW, Green WR, Miller NR, et al. Ocular clinicopathologic correlation of Hallervorden-Spatz syndrome with acanthocytosis and pigmentary retinopathy. *Am J ophthalmol* 1983; 95:369-82.

33. Kohler B. Hallervorden-Spatz syndrome mit akantozytose. *Monatsschr Kinderheilk* 1989;137: 616-9.

34. Higgins JJ, Patterson MC, Papadopoulos NM, et al. Hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration (HARP syndrome). *Neurology* 1992;42:194-8.

35. Savoardo M, Halliday WC, Nardocci N, et al. Hallervorden-Spatz disease : MR and pathologic finding. *AJNR* 1993;14:155-62.

36. Bornstein B, Sandbank U, Fried Y. Hallervorden-Spatz disease associated with Lewy type inclusions. *Confin Neurol* 1966;27:397-405.

37. Defendini R, Markesberry WR, Mastri AR, et al. Hallervorden-Spatz disease and infantile neuroaxonal dystrophy. *J Neurol Sci* 1973;20:7-23.

38. Antonie JC, Tommasi M, Chalumeau A, et al. Maladie de Hallervorden-Spatz avec cosses de Lewy. *Rev Neurol* 1985;12:806-9.

39. Alberca R, Rafel E, Chinchon I, et al. Late onset Parkinsonian syndrome in Hallervorden-Spatz disease. *J Neurol Neurosurg Psychiatry* 1987;50: 1165-8.

40. Pettigrew AL, Jackson LG, Ledbetter DH. New x-linked mental retardation disorder with Dandy-Walker malformation, basal ganglia disease, and seizures. *Am J Med Genet* 1991;38:200-7.

41. Jankovic J, Kirkpatrick JB, Blomquist KA, et al. Late onset Hallervorden-Spatz disease presenting as familial parkinsonism. *Neurology* 1985;35: 227-34.

42. Perry TL, Norman MG, Young VW, et al. Hallervorden-Spatz disease : cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. *Ann Neurol* 1985;18:482-9.

การวินิจฉัย Hallervorden–Spatz syndrome ในสองพี่น้องโดยลักษณะทางคลินิก และการตรวจด้วยคลื่นแม่เหล็กไฟฟ้าสมอง

สมศักดิ์ เทียมเก่า, พ.บ.*,
เบญจพร นิตินาวาการ, พ.บ.**, สุทธิพันธ์ จิตพิมลมาศ, พ.บ.*

Hallervorden–Spatz syndrome (HSS) เป็นกลุ่มอาการที่พบได้น้อย ลักษณะทางคลินิก ประกอบด้วย pyramidal, extrapyramidal การเคลื่อนไหวผิดปกติ พูดลำบาก การเสื่อมของประสาทตา ความจำเสื่อมและอาการรุนแรงมากขึ้น เรื่อยๆ การตรวจด้วยคลื่นแม่เหล็กไฟฟ้าสมองช่วยให้มีการวินิจฉัยโรคได้มากขึ้น โดยพบลักษณะผิดปกติที่สมองส่วน pallidus ที่มีลักษณะคล้ายดาเลือ (eye of the tiger) วิธีวินิจฉัยโรคในผู้ป่วยที่มีริ้วตโดยลักษณะทางคลินิกและการตรวจคลื่นแม่เหล็กไฟฟ้าสมอง

ผู้ป่วยรายที่ 1 เป็นเพศชาย อายุ 28 ปี เริ่มมีอาการพูดลำบาก เดินลำบาก เมื่ออายุ 25 ปี และเมื่ออายุ 28 ปี มีอาการเคลื่อนไหวผิดปกติของมือทั้ง 2 ข้าง ผู้ป่วยรายที่ 2 เป็นพี่ชายของผู้ป่วยรายที่ 1 มีอาการเดินลำบาก ลิ้นและแขนเคลื่อนไหวผิดปกติเมื่ออายุ 25 ปี ตรวจร่างกายทางระบบประสาทของผู้ป่วยทั้ง 2 ราย พบรอยเดินลำบาก พูดลำบาก เกร็งของมือทั้ง 2 ข้าง รีเฟล็กซ์อ็นลีก้า ตรวจไม่พบ Kayser–Fleischer ring และ retinitis pigmentosa ผลการตรวจเลือดหา ระดับทองแดง ceruloplasmin ให้ผลปกติ และระดับทองแดงในปัสสาวะปกติ การตรวจสมองด้วยคลื่นแม่เหล็กไฟฟ้าพบ ลักษณะคล้ายดาเลือ (eye of the tiger) ที่บีริเวนสมองส่วน globus pallidus

ได้นำเสนอผู้ป่วย HSS 2 รายซึ่งเป็นพี่น้องกันและเป็นรายงานแรกของประเทศไทย

คำสำคัญ : Hallervorden–Spatz syndrome, ตาเลือ, การตรวจด้วยคลื่นแม่เหล็กไฟฟ้า

สมศักดิ์ เทียมเก่า, เบญจพร นิตินาวาการ, สุทธิพันธ์ จิตพิมลมาศ
๑๘๘๘๙๘๖๘๖๘๘๘๘ ๒๕๔๓; ๘๓: ๑๕๓๕–๑๕๔๐

* ภาควิชาอายุรศาสตร์

** ภาควิชาจังสีวิทยา, คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น, ขอนแก่น ๔๐๐๐๒