

# The Utility of Conventional Dipsticks for Urinary Protein for Screening of Microalbuminuria in Diabetic Patients

SUPAMAI SOONTHORNPUN, M.D.\*,  
ATCHARA THAMPRASIT, B.N.\*,  
RATTANA LEELAWATTANA, M.D.\*

NATAWAN THAMMAKUMPEE, B.Sc.\*,  
CHATCHALIT RATTARASARN, M.D.\*,  
WORAWONG SETASUBAN, M.D.\*

## Abstract

The demonstration that microalbuminuria is predictive of overt diabetic nephropathy has created a demand for the routine measurement of urinary albumin in diabetic patients. We assessed the sensitivity, specificity, positive and negative predictive values of the conventional dipsticks for urinary protein (Ames Multistix, Bayer Diagnostic, Australia) as the screening test for microalbuminuria in diabetic patients compared with Micral-Test II (Boehringer Mannheim, Germany). Radioimmunoassay for albumin was taken as standard for comparison. With the urinary albumin concentration of 20 mg/L as a discriminating level of microalbuminuria, Micral-Test II had a sensitivity of 98.8 per cent and a specificity of 68.6 per cent whereas Ames Multistix had lower sensitivity but higher specificity. If urinary albumin concentration of 60 mg/L was used instead as a discriminating level of microalbuminuria, none of Ames Multistix by visual reading and only 5 of 32 (15.6%) of those by reflectance photometer had false negative results. By visual reading, the sensitivity of Ames Multistix was increased from 68.1 to 100 per cent with the drop in specificity from 85.7 to 50.2 per cent. On the other hand, the sensitivity was increased from 37.4 to 84.4 per cent but the specificity was maintained if reflectance photometer was used. In conclusion, Ames Multistix was less sensitive than Micral-Test II in detection of urinary albumin concentration above 20 mg/L. At higher urinary albumin concentration above 60 mg/L which indicates a clinically significant microalbuminuria, the sensitivity of Ames Multistix was increased to 100 per cent. Ames Multistix which is much less expensive than Micral-Test II, can be used as the screening test for significant microalbuminuria in clinical practice particularly in cases having financial problems.

**Key word :** Dipsticks, Microalbuminuria, Urinary Protein, Diabetes Mellitus

**SOONTHORNPUN S, et al**  
**J Med Assoc Thai 2000; 83: 797-803**

\* Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.

Diabetic nephropathy is one of the major vascular complications of patients with longstanding diabetes. Microalbuminuria which is defined by the presence of urinary albumin excretion in the range of 20-200  $\mu\text{g}/\text{minute}$  or 30-300  $\text{mg}/24\text{ hours}$  or albumin concentration of 20-200  $\text{mg}/\text{L}$ , is considered to be the earliest clinical manifestation of patients with diabetic nephropathy<sup>(1)</sup>. Microalbuminuria has been shown to be the predictor of the future development of clinical or overt diabetic nephropathy in both type 1 and type 2 diabetic patients<sup>(2-5)</sup>. Since rigid glycemic control and treatment with angiotensin converting enzyme inhibitors at stage of microalbuminuria can delay or may prevent the progression of diabetic nephropathy, (6-11) screening of diabetic patients for microalbuminuria is recommended and has been well regarded as part of routine standard diabetic care.

Microalbuminuria can be quantitatively measured by several methods, for example, radioimmunoassay (RIA), immunoturbidimetry and nephelometry methods. These methods are expensive and require special equipment, their routine use as a screening test of microalbuminuria is not cost-effective. Therefore, it is recommended that screening with reagent tablets or dipsticks for microalbuminuria may be carried out first and followed by more specific tests if the screening tests give positive results<sup>(12)</sup>.

The conventional dipsticks for urinary protein which are routinely used in hospital laboratories is thought to be insensitive to detect protein in microalbuminuric range and not recommended as the screening test for microalbuminuria. The lowest concentration of urinary protein which can be detected by this method is  $\sim 200\text{ mg}/\text{L}$ . Since albumin comprises  $\sim 20$  per cent of urinary protein, (13) urinary protein concentration of 200  $\text{mg}/\text{L}$  should therefore be composed of 40  $\text{mg}/\text{L}$  of albumin. Hence, any levels of albumin above 40  $\text{mg}/\text{L}$  which include the microalbuminuric range, should be theoretically detectable by the conventional dipstick method.

In this study, we assessed the sensitivity, specificity, positive and negative predictive values of the conventional dipsticks for urinary protein (Ames Multistix, Bayer Diagnostic, Australia) as the screening test of microalbuminuria in diabetic patients compared with Micral-Test II (Boehringer Mannheim, Germany) which is widely used as the screening test of microalbuminuria in clinical prac-

tice. RIA for albumin was measured for all urine specimens as standard for comparison.

## MATERIAL AND METHOD

First-voided morning urine specimens were collected from 196 diabetic patients. Each urine specimen was divided into 3 portions after being mixed well. The first portion was tested with Ames Multistix and Micral-Test II and interpreted by three of the investigators (S.S., A.T., N.T.) who were blinded to each other's results. The testing and handling procedure as well as visual reading technic were followed according to the manufacturer's operating manual. The corresponding results from at least two of the three investigators were regarded as the test results. Given possible disagreement between visual results and instrumental results, the second portion of the urine sample was tested with Ames Multistix using the Clinitek 200 urine chemistry analyzer, a reflectance photometer designed to read the strips with automated timing of color development. The first and second portion of the urine samples were tested at room temperature within 4 hours after voiding. The third portion of the urine sample was stored at 2-8°C for later quantitative measurement of albumin using RIA method (Diagnostic products Corporation, CA., USA). The detection limit of the assay was 0.3  $\text{mg}/\text{L}$ . The intra-assay CV of the test at albumin concentrations of 9.5 and 53.7  $\text{mg}/\text{L}$  were 4.8 and 4.1 per cent, respectively. All urine samples were tested within 2 weeks of collection.

Ames Multistix is a chemically impregnated dipstick. The degree of proteinuria is determined from a colorimetric reaction of an indicator dye (0.3%w/w tetrabromphenol blue). The color is compared to a color chart on the bottle label. The test assay levels are negative, trace (10-20  $\text{mg}/\text{dl}$ ), 1+ (30  $\text{mg}/\text{dl}$ ), 2+ (100  $\text{mg}/\text{dl}$ ), 3+ (300  $\text{mg}/\text{dl}$ ), and 4+ (1,000  $\text{mg}/\text{dl}$ ). The results are considered positive when the tests produce a reaction color corresponding to trace or more.

Micral-Test II is gold-labelled optically read immunoassay. The color produced permits the visual determination of urinary albumin concentration by comparison with color blocks on the bottle label after a 1-minute incubation time. The test assay levels are 0, 20, 50 and 100  $\text{mg}/\text{L}$  albumin. Reaction color lighter than the color scale of 20  $\text{mg}/\text{L}$  indicates negative result. The results are positive when the tests produce a reaction color

corresponding to 20 mg/L or more of albumin. The sensitivity of Micral-Test II in detection of microalbuminuria is claimed to be higher than the first-generation Micral-Test,(14-16) the reported sensitivity of which ranged from 63 per cent to as high as 100 per cent(17-23).

To determine the diagnostic accuracy of each test, results obtained by Ames Multistix and Micral-Test II were interpreted with regard to their ability to detect urinary albumin concentration of  $\geq 20$  mg/L as determined by RIA. Urine samples that contained albumin out of microalbuminuric range or  $> 200$  mg/L were excluded from the analysis.

## RESULTS

The albumin concentrations of 196 urine samples measured by RIA ranged from 1.2 to 189.7

mg/L. Of these, 105 (53.6%) had urinary albumin concentration  $< 20$  mg/L and 91 (46.4%) had urinary albumin concentration  $\geq 20$  mg/L or within microalbuminuric range. As seen in Tables 1 and 2, Micral-Test II had lower rate of false negative results, whereas, Ames Multistix had a lower rate of false positive results in detection of urinary albumin concentration of  $\geq 20$  mg/L. The higher false negative rate of Ames Multistix was greater among those performed by reflectance photometer. With the urinary albumin concentration of 20 mg/L as an upper limit of normal or a discriminating level of microalbuminuria, Ames Multistix could not detect the presence of microalbuminuria in 29 (46.8%) samples if read by investigators' eyes (visual reading) and 57 (62.6%) samples if read by reflectance photometer, whereas, only one (1.1%) sample was missed by Micral-Test II. Therefore,

**Table 1. Comparison of the ability of Ames Multistix and Micral-Test II in detection of microalbuminuria of various ranges.**

| Test                   | urinary albumin concentration by RIA (mg/L) |              |             |
|------------------------|---------------------------------------------|--------------|-------------|
|                        | < 20 (n=105)                                | 20-60 (n=59) | > 60 (n=32) |
| <b>Ames Multistix</b>  |                                             |              |             |
| Visual reading         |                                             |              |             |
| Negative               | 90                                          | 29           | 0           |
| Positive               | 15                                          | 30           | 32          |
| Reflectance photometer |                                             |              |             |
| Negative               | 104                                         | 52           | 5           |
| Positive               | 1                                           | 7            | 27          |
| <b>Micral-Test II</b>  |                                             |              |             |
|                        |                                             |              |             |
| Negative               | 72                                          | 1            | 0           |
| Positive               | 33                                          | 58           | 32          |

RIA : radioimmunoassay method

**Table 2. Comparison of diagnostic accuracy of Ames Multistix and Micral-Test II according to cutoff levels of microalbuminuria.**

| Test                   | MAU level (mg/L) | Sensitivity | Specificity (%) | PPV  | NPV   |
|------------------------|------------------|-------------|-----------------|------|-------|
| <b>Ames Multistix</b>  |                  |             |                 |      |       |
| Visual reading         | $\geq 20$        | 68.1        | 85.7            | 80.5 | 75.6  |
|                        | $> 60$           | 100.0       | 50.2            | 41.6 | 100.0 |
| Reflectance photometer | $\geq 20$        | 37.4        | 99.0            | 97.1 | 64.6  |
|                        | $> 60$           | 84.4        | 95.1            | 77.1 | 96.9  |
| <b>Micral-Test II</b>  | $\geq 20$        | 98.9        | 68.6            | 73.2 | 98.6  |

MAU : microalbuminuria, PPV : positive predictive value, NPV : negative predictive value

Micral-Test II had higher negative and lower positive predictive values than Ames Multistix in this regard.

From Table 1, regarding the Ames Multistix results, it was notable that all 119 samples tested negative by visual reading and 156 of 161 (96.9%) samples tested negative by reflectance photometer had urinary albumin concentration  $< 60$  mg/L. If urinary albumin concentration of  $\geq 60$  mg/L was used instead as a discriminating level of microalbuminuria, none of Ames Multistix by visual reading and only 5 of 32 (15.6%) of those by reflectance photometer had false negative results. By visual reading, the sensitivity of Ames Multistix was increased from 68.1 to 100 per cent with the drop in specificity from 85.7 to 50.2 per cent (Table 2). On the other hand, the sensitivity was increased from 37.4 to 84.4 per cent with a slightly decrease in specificity from 99.0 to 95.1 per cent if reflectance photometer was used. With the use of urinary albumin concentration of 60 mg/L as a cutoff level of microalbuminuria, Ames Multistix, either by visual reading or reflectance photometer, had high negative predictive power (100 vs 96.9%) although their positive predictive power was not as high (41.6 vs 77.1%).

## DISCUSSION

Our study agreed with others that Micral-Test II, a semi-quantitative immunoassay for urinary albumin, is appropriate as a screening test of microalbuminuria in diabetic patients considering its high sensitivity and high negative predictive power. The drawback of this test in terms of its poor positive predictive power or having a high false positive rate was also confirmed in our study which means that it requires other specific or repeated testing to confirm the diagnosis. Furthermore, our study also agreed that the conventional dipstick for urinary protein was less sensitive than Micral-Test II in detection of urinary albumin concentration above 20 mg/L. However, the results of our study were in contrast with Pegoraro *et al*'s study<sup>(24)</sup> which showed the high sensitivity of Chemstrips, a dipstick for urinary protein, comparable to Micral-Test (90.0 vs 96.7%). The fewer number of samples containing urinary albumin concentration  $> 20$  mg/L (~14 vs ~46% of our study) may have possibly contributed to the unexpectedly high sensitivity of Chemstrips in the latter study. Our results were also contradictory to results from

Bloomgarden's study<sup>(25)</sup> in which the fairly high sensitivity but low specificity of Ames reagent strips, a similar test-strips used in our study, either by visual reading or by reflectance photometer were demonstrated. The higher range of urinary albumin concentration approaching 300 mg/L in a significant number of samples may be responsible for the high sensitivity of this test in Bloomgarden's study since the chance of having positive results could be increased. However, with the same instrument as ours, the false positive rate particularly by visual reading was much higher in his study. This discrepant result would probably be due to the subjective variability in color perception.

It is well known that the intraindividual variability of urinary albumin excretion particularly at the lower levels is very high<sup>(26,27)</sup>. Patients who test positive for microalbuminuria on one occasion may turn out to be negative on other occasions and vice versa. In addition to biologic variation of urinary albumin excretion, it should be recognized that other factors, for instance, heavy exercise, poor glycemic control, acute febrile illness, cardiac failure, urinary tract infection may transiently increase urinary albumin excretion. Therefore, the finding of urinary albumin excretion slightly above the normal range may not represent pathological microalbuminuria. Furthermore, the association between the presence of lower levels of microalbuminuria and the progression of nephropathy is not strong. In Steno studies where the development and progression of diabetic nephropathy in patients with type 1 diabetes was prospectively followed,<sup>(28)</sup> Feldt-Rasmussen *et al* reported the progression to clinical nephropathy in only one of 32 patients who had an initial urinary albumin excretion rate of 30-99 mg/24 hours (or urinary albumin concentration of ~20-60 mg/L), whereas, such progression was demonstrated in 12 of 19 patients who had an initial urinary albumin excretion rate of 100-300 mg/24 hours after 5-8 years of follow-up. In another long-term study of normotensive type 2 diabetic patients who had persistent microalbuminuria reported by Ravid *et al*,<sup>(9)</sup> it was found that all patients who progressed to clinical macroalbuminuria had initial urinary albumin excretion greater than 89 mg/24 hours (or urinary albumin concentration of ~60 mg/L). Mathiesen *et al*<sup>(10)</sup> found that of 7 patients with type 1 diabetes who developed clinical nephropathy (urinary albumin  $> 300$  mg/24 hours) during 4 years of

follow-up, only one had a baseline urinary albumin excretion of 54 mg/24 hours and all of the rest had baseline urinary albumin excretion of  $> 100$  mg/24 hours.

Therefore, it could be stated that urinary albumin excretion above 90-100 mg/24 hours or urinary albumin concentration above ~60-70 mg/L signifies a clinically meaningful albuminuria which can predict the progression of diabetic nephropathy(29). Our study showed that Ames Multistix particularly by visual reading had high sensitivity and high negative predictive power to detect urinary albumin concentration above this level. Although the sensitivity of Micral-Test II at this level of urinary albumin concentration was not tested in our study and cannot be compared with Ames Multistix, it should not be superior to Ames Multistix given the high sensitivity of the latter. When the cost per test of Ames Multistix (0.25 US\$ per test; 40 Baht = 1 US\$) and Micral-Test II (1.13 US\$ per test) was taken into account, it would be more cost effective to use Ames Multistix as a screening test for significant microalbuminuria. Diabetic patients who test negative with Ames Multistix should be rescreened annually and those who test positive with the results of "trace" or more

should be confirmed by measuring albumin excretion rate with a more specific method.

In summary, our study showed that Ames Multistix, a conventional dipstick for urine protein was less sensitive than Micral-Test II, a dipstick for microalbuminuria in detection of urinary albumin concentration above 20 mg/L. At higher urinary albumin concentration above 60 mg/L which indicates a clinically significant microalbuminuria, the sensitivity of Ames Multistix was increased to approach 100%. Since urinary albumin excretion above this level predicts the progression of diabetic nephropathy, we suggest that Ames Multistix or other brands of dipstick for urinary protein, if confirmed, can be used as the screening test for significant microalbuminuria in clinical practice particularly in some rural areas or some developing countries where Micral-Test or other tests for microalbuminuria are not available or too expensive.

#### ACKNOWLEDGEMENTS

This study was supported by Prince of Songkla University research grant. We wish to thank Kalaya Leetanaporn for assisting in the assay of urinary albumin.

(Received for publication on August 21, 1998)

#### REFERENCES

1. Mogensen CE. Microalbuminuria as a predictor of clinical diabetic nephropathy. *Kidney Int* 1987; 31: 673-89.
2. Viberti GC, Jarrett RJ, Mahmud U, Hill RD, Argyropoulos A, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. *Lancet* 1982; 26: 1430-2.
3. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. *N Engl J Med* 1984; 311: 89-93.
4. Mathiesen ER, Oxenboll B, Johansen K, Svendsen PA, Deckert T. Incipient nephropathy in type 1 (insulin-dependent) diabetes. *Diabetologia* 1984; 26: 406-10.
5. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. *N Engl J Med* 1984; 310: 356-60.
6. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. *N Engl J Med* 1993; 329: 977-86.
7. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. *Diabetes Res Clin Pract* 1995; 28: 103-17.
8. Sano T, Kawamura T, Matsumae H, et al. Effects of long-term enalapril treatment on persistent microalbuminuria in well-controlled hypertensive and normotensive NIDDM patients. *Diabetes Care* 1994; 17: 420-4.
9. Ravid M, Lang R, Rachmani R, Lishner M. Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. *Arch Intern Med* 1996; 156: 286-9.

10. Mathiesen ER, Hommel E, Giese J, Parving HH. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. *Br Med J* 1991; 303: 81-7.
11. Viberti GC, Mogensen CE, Groop LC, Pauls JF. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. *J Am Med Assoc* 1994; 271: 275-9.
12. Position statement. American Diabetes Association. Diabetic nephropathy. *Diabetes Care* 1998; 21 (suppl 1): S50-3.
13. Viberti GC, Mackintosh D, Keen H. Determinants of the penetration of proteins through the glomerular barrier in insulin-dependent diabetes mellitus. *Diabetes* 1983; 32: 92-5.
14. Poulsen PL, Mogensen CE. Evaluation of a new semiquantitative stix for microalbuminuria [Letter]. *Diabetes Care* 1995; 18: 732-3.
15. Mogensen CE, Viberti GC, Peheim E, *et al.* Multicenter evaluation of the Micral-Test II Test strip, an immunologic rapid test for the detection of microalbuminuria. *Diabetes Care* 1997; 20: 1642-6.
16. Gilbert RE, Akdeniz A, Jerums G. Detection of microalbuminuria in diabetic patients by urinary dipstick. *Diabetes Res Clin Pract* 1997; 35: 57-60.
17. Webb DJ, Newman DJ, Chaturvedi N, Fuller JH. The use of the Micral-Test strip to identify the presence of microalbuminuria in people with insulin dependent diabetes mellitus (IDDM) participating in the EUCLID study. *Diabetes Res Clin Pract* 1996; 31: 93-102.
18. Tiu SC, Lee SS, Cheng MW. Comparison of six techniques in the measurement of microalbuminuria in diabetic patients. *Diabetes Care* 1993; 16: 616-20.
19. Jensen JEB, Nielsen SH, Foged L, Holmgaard SN, Magid E. The Micral test for diabetic microalbuminuria: predictive values as a function of prevalence. *Scand J Clin Lab Invest* 1996; 56: 117-22.
20. Jury DR, Mikkelsen DJ, Glen D, Dunn PJ. Assessment of Micral-Test microalbuminuria test strip in the laboratory and in diabetic outpatients. *Ann Clin Biochem* 1992; 29(pt 1): 96-100.
21. Gilbert RE, Akdeniz A, Jerums G. Semi-quantitative determination of microalbuminuria by urinary dipstick. *Aust N Z Med* 1992; 22: 334-7.
22. Bangstad HJ, Try K, Dahl-Jorgensen K, Hanssen KF. New semiquantitative dipstick test for microalbuminuria. *Diabetes Care* 1991; 14: 1094-7.
23. Marshall SM, Shearing PA, Alberti KG. Micral-Test strips evaluated for screening for albuminuria. *Clin Chem* 1992; 38: 588-91.
24. Pegoraro A, Singh A, Bakir AA, Arruda JAL, Dunea G. Simplified screening for microalbuminuria. *Ann Intern Med* 1997; 127: 817-9.
25. Bloomgarden ZT. Urine reagent stick protein determination: utility in individuals with diabetes mellitus. *Practical Diabetes International* 1996; 13: 43-5.
26. Johnston J, Paterson KR, O' Reilly D St J. Estimating urinary albumin excretion rate of diabetic patients in clinical practice. *Br Med J* 1993; 306: 493-4.
27. Howey JEA, Browning MCK, Fraser CG. Biologic variation of urinary albumin: consequences for analysis, specimen collection, interpretation of results, and screening programs. *Am J Kidney Dis* 1989; 13: 35-7.
28. Feldt-Rasmussen B, Mathiesen ER, Jensen T, Lauritzen T, Deckert T. Effect of improved metabolic control on loss of kidney function in type 1 (insulin-dependent) diabetic patients: an update of the Steno studies. *Diabetologia* 1991; 34: 164-70.
29. Selby JV, Fitz Simmons SC, Newman JM, Katz PP, Sepe S, Showstack J. The natural history and epidemiology of diabetic nephropathy. Implications for prevention and control. *J Am Med Assoc* 1990; 263: 1954-60.

## การตรวจไมโครอัลบูมินในปัสสาวะด้วยแคนบตรวจน์ในปัสสาวะในผู้ป่วยเบาหวาน

สุกนัย สุนทรพันธ์, พ.บ.\*, นภavarorn ธรรมคำภีร์, ว.ท.บ.\*,  
อัจฉรา ธรรมประสิทธิ์, พ.ย.บ.\* , ชัชลิต รัตตสาร, พ.บ.\*,  
รัตนา ลีลาวดีนา, พ.บ.\* , วรวงษ์ เสดสุบรรณ, พ.บ.\*

ในปัจจุบันการตรวจหาอัลบูมินในปัสสาวะ ถือเป็นส่วนหนึ่งในการดูแลผู้ป่วยเบาหวาน เนื่องจากการตรวจพบไมโครอัลบูมินในปัสสาวะ (microalbuminuria) ในผู้ป่วยเบาหวานสามารถพยากรณ์การเกิดไตเสื่อม (diabetic nephropathy) ในทางปฏิบัตินิยมใช้แคนบตรวจน์ไมโครอัลบูมินในปัสสาวะเป็นการตรวจกรอง (screening test) ไม่แนะนำให้ใช้แคนบตรวจน์โปรดตีนในปัสสาวะซึ่งมีใช้กันอย่างแพร่หลายและราคาถูกกว่า เนื่องจากมีความไวในการตรวจไมโครอัลบูมินในปัสสาวะไม่เพียงพอ ข้อเสียของการใช้แคนบตรวจน์ไมโครอัลบูมินคือราคาค่อนข้างแพงและมีไม่แพร่หลายโดยเฉพาะในโรงพยาบาลขนาดเล็ก คณะผู้วิจัยจึงได้ศึกษาผลการตรวจไมโครอัลบูมินในปัสสาวะในผู้ป่วยเบาหวานด้วยแคนบตรวจน์ไมโครอัลบูมิน (Micral-Test II, Boehringer Mannheim, Germany) และแคนบตรวจน์โปรดตีน (Ames Multistix, Bayer Diagnostic, Australia) โดยใช้การตรวจด้วยวิธี radioimmunoassay เป็นมาตรฐาน ผลการศึกษาพบว่า ถ้าใช้ระดับอัลบูมินในปัสสาวะที่ 20 มก/ล เป็นเกณฑ์ขั้นต่ำของไมโครอัลบูมินในปัสสาวะ การตรวจด้วย Micral-Test II มีความไวร้อยละ 98.8 และความจำเพาะร้อยละ 68.6 ในขณะที่การตรวจด้วย Ames Multistix มีความไวน้อยกว่าแต่ความจำเพาะมากกว่า ถ้าใช้ระดับอัลบูมินที่ 60 มก/ล เป็นเกณฑ์ขั้นต่ำของไมโครอัลบูมินในปัสสาวะ พบว่าการตรวจด้วย Ames Multistix โดยการอ่านผลด้วยตาจะมีความไวเพิ่มขึ้นจากร้อยละ 68.1 เป็นร้อยละ 100 ความจำเพาะลดลงจากร้อยละ 85.7 เป็นร้อยละ 50.2 และไม่มีผลบันดาลใจ แต่ถ้าอ่านผลด้วยเครื่อง reflectance photometer จะมีความไวเพิ่มขึ้นจากการร้อยละ 37.4 เป็นร้อยละ 84.4 ความจำเพาะไม่เปลี่ยนแปลงและมีผลบันดาลใจ 15.6 โดยสรุป การตรวจไมโครอัลบูมินในปัสสาวะด้วย Ames Multistix มีความไวน้อยกว่า Micral-Test II ถ้าใช้ระดับอัลบูมินในปัสสาวะที่ 20 มก/ล เป็นเกณฑ์ขั้นต่ำของไมโครอัลบูมินในปัสสาวะ แต่ถ้าใช้ระดับอัลบูมินในปัสสาวะที่ 60 มก/ล ซึ่งเป็นระดับที่มีความสำคัญทางคลินิกเป็นเกณฑ์ขั้นต่ำของไมโครอัลบูมินในปัสสาวะ การตรวจด้วย Ames Multistix มีความไวเพิ่มขึ้นเป็นร้อยละ 100 ดังนั้นในทางปฏิบัติอาจใช้ Ames Multistix ซึ่งมีราคาถูกกว่า Micral-Test II มาก เป็นการตรวจกรองสำหรับไมโครอัลบูมินในปัสสาวะ โดยเฉพาะในรายที่มีปัญหาด้านเศรษฐกิจ

**คำสำคัญ :** แคนบตรวจน์, ไมโครอัลบูมินในปัสสาวะ, โปรดตีนในปัสสาวะ, เบาหวาน

สุกนัย สุนทรพันธ์ และคณะ

จดหมายเหตุทางแพทย์ ฯ 2543; 83: 797-803

\* หน่วยต่อมิลลิลิตรท่อและเม็ดอาหารอัลซีม, ภาควิชาอายุรศาสตร์, คณะแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์, อ.หาดใหญ่, จ.สงขลา 90110