

Chlamydophila (Chlamydia) pneumoniae as a Cause of Community-Acquired Pneumonia in Thailand†

**WUDTHICHAI SUTTITHAWIL, M.D.*,
PIMJAI NAIGOWIT, B.Sc., M.T.**,
NONGLAK CHANTADISAI, M.D.****,**

PIYADA WANGROONGSARB, M.Sc.,
PONGPUN NUNTHAPISUD, M.Sc.***,
YONGYUDH PLOYSONGSANG, M.D., D.Sc., FCCP.*******

Abstract

Chlamydophila (Chlamydia) pneumoniae infection is increasingly reported worldwide nowadays. We studied twelve Thai adults presenting with the clinical symptoms and signs of community-acquired pneumonia (CAP) due to *C. pneumoniae* (TWAR) at Pramongkutkla Hospital in Bangkok, Thailand. Their mean age was 38 (range 21-73) years. Six patients lived in Bangkok. Seven patients had comorbid diseases (four cases with allergic asthma, one each with diabetes mellitus, chronic obstructive pulmonary disease and coronary artery disease). *C. pneumoniae* pneumonia presented as subacute pneumonia in 6 patients. The clinical manifestations were mild (IDSA risk class I-III) except in 4 patients who had preexisting allergic asthma, COPD and coronary heart disease. The diagnosis of *C. pneumoniae* pneumonia was based on microimmunofluorescence (MIF) antibody technique (IgM titer \geq 1:16, IgG \geq 1:512, IgA \geq 1:256 with or without fourfold rises). The clinical conditions were consistent with the primary infection (IgM titer of 1:16 or higher) in 6 patients and reinfection (IgG titer of 1:512, IgA titer of 1:256 or higher without rises of IgM titer) in the other 6 patients. Minimal bilateral pleural effusion was detected in only one patient. Coinfection was demonstrated in 2 patients (one each with *S. pneumoniae* and *K. pneumoniae*). All patients markedly improved after a 2-week course of macrolide, doxycycline or newest fluoroquinolone therapy. All patients had done well at one year of follow-up. *C. pneumoniae* infection has been recently recognized and a high seroprevalence (37%) in Thai school children and 100 per cent in young male Thai military conscripts has been reported. This report suggests that this infection, *C. pneumoniae*, may be a common pathogen of CAP in Thailand.

Key word : *Chlamydophila Pneumoniae*, *Chlamydia Pneumoniae*, Chlamydophila, Chlamydia, TWAR, Community-Acquired Pneumonia, CAP, Atypical Pneumonia, Atypical Pathogen, Respiratory Tract Infection, Sinusitis, Microimmunofluorescence, MIF, Fluoroquinolone, Thailand.

**SUTTITHAWIL W, WANGROONGSARB P, NAIGOWIT P,
NUNTHAPISUD P, CHANTADISAI N, PLOYSONGSANG Y**
J Med Assoc Thai 2001; 84: 430-437

* Division of Allergy and Immunology, Pramongkutkla Hospital College of Medicine, Rajvithi Rd., Bangkok 10400,

** NIH, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000,

*** Department of Microbiology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok 10330,

**** Division of Pulmonary Medicine, Pramongkutkla Hospital College of Medicine, Rajvithi Rd., Bangkok 10400,

***** Pulmonary and Critical Care Medicine, Bumrungrad Hospital, Bangkok 10400, Thailand.

† Presented in part at the 1997 Annual Conference of the Royal College of Physicians of Thailand, April 22-25, Chiang Mai, Thailand.

Chlamydophila (Chlamydia) pneumoniae (TWAR)⁽¹⁾ is an obligatory intracellular pathogen. Unlike *C. psittaci*, it usually causes human infections by inhalation not association with an avian contact^(2,3). At present, it is believed to be the most common cause of human *chlamydial* infections and can cause a variety of clinical manifestations⁽⁴⁻⁶⁾: rhinosinusitis, pharyngolaryngitis, tracheobronchitis, and mild or life-threatening pneumonia⁽⁷⁾. Recently, there have also been increasing reports, suggesting a special association of this infection with bronchial asthma⁽⁸⁻¹⁰⁾, ischemic stroke⁽¹¹⁾ and coronary heart disease (CHD)⁽¹²⁻¹⁵⁾. Worldwide seroepidemiological studies revealed that approximately 50 percent of adults had antibodies to this pathogen and had a seroconversion of 6-9 percent annually^(3,5). It contributes approximately 10 percent of community-acquired pneumonia (CAP) in adult patients all over the world⁽⁴⁾. Nunthapisud et al, in 1992, found a seroprevalence of 37 percent in Thai school children⁽¹⁶⁾ and 100 percent in Thai military recruits (Nunthapisud et al, unpublished) in 1999. To our knowledge, this is the first report of *C. pneumoniae* pneumonia in Thailand.

REPORT CASES

Case 1.

A 21-year-old woman presented with a fever, nonproductive cough, left-sided pleuritic chest pain and shortness of breath for one week. Two weeks previously, she had an URTI and her symptoms worsened. On examination, she had a temperature of 39°C, a respiratory rate of 20/min, a pulse rate of 98 beats/min, and a BP of 120/80 mmHg. ENT examination showed a mild pharyngitis without postnasal drip. Chest auscultation showed fine crackles at the left lower lung areas. Laboratory studies revealed a hemoglobin of 13 g/dL, a WBC count of $9.2 \times 10^9/L$ (78% neutrophils). Chest radiographs showed a patchy infiltrate in the left lower lung (retrocardiac) region and X-ray of paranasal sinuses revealed a haziness in both maxillary sinuses. Sputum culture yielded normal flora. MIF antibody tests for *C. pneumoniae* revealed an IgM titer of 1:64 and an IgG titer of more than 1:512. The patient's condition markedly improved after a 2-week course of erythromycin therapy without any complications.

Case 3.

A 27-year-old healthy man presented with a fever, non productive cough, shortness of breath and malaise for 10 days. A few days later, his clinical condition worsened. He developed a progressive dyspnea. On the day of admission, his temperature was 39°C, respiratory rate 24/min, pulse rate 108/min, and BP 140/90. ENT and skin examination were normal. Chest auscultation revealed bronchial breath sounds and bilateral lower lung crackles. Laboratory studies showed a WBC count of $13.6 \times 10^9/L$ (76% neutrophils). A chest radiograph revealed bilateral airspace pneumonia without pleural effusions. Arterial blood gas analysis revealed a pH of 7.32, a PaCO_2 of 30 mmHg and a PaO_2 of 72 mmHg. Empirical therapy with cefuroxime and doxycycline were started. His condition markedly improved after a 2-week course of doxycycline. Sputum and nasopharyngeal swab culture were negative. Serologic tests for *Rickettsia*, *M. pneumoniae*, *Legionella* species and respiratory viruses were all negative but those for *C. pneumoniae* were positive.

Case 10.

A 52-year-old woman, with a history of diabetes mellitus, hypertension and left-sided hemiparesis for 5 years, had an URTI two weeks previously. One week later, she developed a fever, dry cough and shortness of breath. On examination, she had a temperature of 38.4°C, a respiratory rate of 22/min, a pulse rate of 110 beats/min and a BP of 170/100 mmHg. ENT examination showed only a mild pharyngitis. Chest auscultation revealed generalized rhonchi. Laboratory studies revealed a hemoglobin of 14 g/dL, a WBC count of $9.7 \times 10^9/L$ (63% neutrophils). A chest radiograph showed bilateral interstitial infiltrates with lower lobe predominance. The paranasal sinus films were normal. The sputum examination and culture were negative. MIF antibody tests for *C. pneumoniae* showed a fourfold rise of IgG alone. Her clinical condition markedly improved after a 2-week course of clarithromycin.

Case 11.

A 60-year-old man, with underlying COPD, presented with a fever, productive cough with abundant brownish sputum, and shortness of breath for 3 days. A few hours prior to admission, his clinical condition worsened. He developed

progressive dyspnea with impending respiratory failure. On the day of admission, his temperature was 38.6°C, respiratory rate 28/min, pulse rate 118/min, and BP 150/90. He was in respiratory distress with use of accessory respiratory muscles. ENT and skin examination were normal. Chest auscultation revealed generalized wheezing and rhonchi on bilateral lungs. Laboratory studies showed a WBC count of $16.8 \times 10^9/L$ (91% neutrophils). A chest radiograph revealed bilateral airspace pneumonia without pleural effusion. Arterial blood gas analysis revealed a pH of 7.26, a PaCO_2 of 44 mmHg and a PaO_2 of 56 mmHg. Conventional therapy and ventilatory support, as there was acute exacerbation of COPD, were given. Empirical therapy with ceftriaxone and clarithromycin were started. His blood cultures yielded no growth and sputum culture grew *K. pneumoniae*. Serologic tests for *Rickettsia*, *M. pneumoniae*, *Legionella* species and respiratory viruses were all negative but those for *C. pneumoniae* were positive. His condition markedly improved and the ventilator was subsequently withdrawn after a 3-week course of supportive treatment for acute exacerbation of COPD.

Case 12.

A 73-year-old woman with preexisting coronary heart disease presented with a fever, nonproductive cough, progressive dyspnea on exertion and paroxysmal nocturnal dyspnea (PND). Two weeks previously, she was admitted to a general hospital near her home for investigation and treatment. Her condition worsened. On examination, she had a temperature of 37°C, a respiratory rate of 22/min, a pulse rate of 106/min and a BP of 140/90. The jugular venous pressure (JVP) was elevated. Chest auscultation revealed generalized fine crackles, rhonchi and wheezes in all lobes. Laboratory studies showed a hemoglobin of 12.8 g/dL, a WBC count of $10.8 \times 10^9/L$ (82% neutrophils). Chest radiographs demonstrated bilateral interstitial infiltrates (lower lung predominance), cardiomegaly and minimal pleural effusions. The first impression was CHF, aggravated by CAP. Serologic tests for *C. pneumoniae* were positive with an IgG level of 1:16 with a fourfold rising. The patient rapidly improved after doxycycline and conventional treatment for CHF. The co-morbid diseases of all patients are summarized in Table 1,

clinical features in Table 2, and laboratory data in Table 3.

DISCUSSION

Chlamydophila (Chlamydia) pneumoniae is believed to be transmitted by respiratory tract secretions and causes human infections of many different patterns. The clinical manifestations range from asymptomatic or mild upper respiratory tract infection (URTI) to life-threatening pneumonia. There is no pathognomonic clinical and radiographic patterns that could help in differentiation of *C. pneumoniae* pneumonia from other causes. Some patients may develop characteristic biphasic illnesses, starting with the initial symptoms of URTI (pharyngitis, rhinosinusitis and hoarseness) and followed by symptoms of lower respiratory tract infection (LRTI) in 1-4 weeks⁽⁴⁾. Recently, there have been several reports, demonstrating the association of this persistent infection with bronchial asthma⁽⁸⁻¹⁰⁾, ischemic stroke⁽¹¹⁾ and atherosclerotic heart diseases⁽¹²⁻¹⁵⁾. Currently, many more investigations are being conducted to elucidate the role of *C. pneumoniae* among these entities.

Several seroepidemiological studies have shown that *C. pneumoniae* antibodies have been found consistently more often in men than in women⁽³⁾. There has not been an association of this infection with smoking. In our report, the mean age of the patients was 38 (range 21-73) years and eight patients were younger than 40. There was also no sex preponderance. Eight patients had co-morbid diseases: allergic rhinitis and asthma (4 patients), diabetes mellitus (1), COPD (1), and CHD (1) (Table 1).

There were no specific clinical features associated with *C. pneumoniae* pneumonia. Six patients had subacute onset of mild pneumonia with previous or simultaneous URTI (one each for

Table 1. Co-morbid diseases in 7 out of 12 patients with *C. pneumoniae* pneumonia.

Co-morbid diseases	No. of patients	%
Allergic asthma	4	33
Chronic obstructive pulmonary disease	1	8
Diabetes mellitus	1	8
Coronary heart disease	1	8

pharyngitis and rhinitis and four for sinusitis). The average interval from the onset of URTI symptoms to the presentation was 7 (range 4-14) days. The most common symptoms and signs of our patients were cough, shortness of breath, fever, sore throat, chest pain, malaise, headache, and diarrhea respectively (Table 2). It tended to be mild (IDSA risk class I-III) in young patients and more severe (IDSA risk class IV-V) in older ones, including two patients with preexisting COPD and heart disease who needed hospitalization.

Table 2. The clinical features of 12 patients with *C. pneumoniae* pneumonia.

Symptoms	No. of patients	%
Cough	12	100
productive	4	33
non productive	8	67
Shortness of breath	10	83
Fever	8	67
Sore throat	6	50
Chest pain	5	42
Malaise	5	42
Headache	4	33
Hoarseness	2	17
Diarrhea	1	8
Signs		
Fever (temperature of $\geq 38^{\circ}\text{C}$)	7	58
Respiratory rate $\geq 30/\text{min}$	3	25
Pulse $\geq 125/\text{min}$	3	25
Wheeze	5	42
Pulmonary crackles	5	42
Pulmonary rhonchi	5	42
Laboratory studies		
Normal WBC (WBC = $4.0-11.0 \times 10^9/\text{L}$)	7	58

Chest auscultation revealed rhonchi and crackles in all but two patients. Like previous reports of primary infection pneumonia in young adults and reinfection pneumonia in elderly patients, we found 5 young patients, consistent with primary infection and 5 older ones with reinfection. This infection was thought to precipitate CHF and exacerbate acute respiratory symptoms in elderly patients with ischemic heart disease and COPD respectively. Fortunately, both patients had a good recovery after an appropriate antibiotic and conventional treatment for CHF and COPD.

Like other atypical pneumonia, WBC counts remained in the normal range ($4.0-11.0 \times 10^9/\text{L}$) in 7 patients and was slightly elevated in the remaining including two patients with coinfection (one each with *S. pneumoniae* and *K. pneumoniae*). Most patients produced only scanty mucoid sputa and made it quite difficult to obtain specimens for identification of responsible organisms.

Chest radiographs in *C. pneumoniae* pneumonia ranged from unilateral subsegmental infiltrates to severe diffuse bilateral airspace disease⁽¹⁷⁾. We found a focal segmental infiltrate in six patients, multiple segmental infiltrates in two patients, combination of airspace and interstitial patterns in two patients, and one each for interstitial infiltrates and lung consolidation. It tended to involve the lower lobe of both lungs. Bilateral minimal pleural fluid was found in only one patient with preexisting coronary heart disease. However, this could represent concomitant CHF in this patient.

All patients had a positive serological response by the MIF test. Six patients had positive IgM antibodies with a titer of 1:16 or higher together with IgG titer of 1:512 or more in the acute phase sera. In six patients who lacked IgM response, the diagnosis of reinfection was made by the clinical pictures and demonstration of a fourfold increase of the IgG titer (Table 3). Our positive serological tests had to have reproducible results before the final conclusion was made.

Generally, the organism responded well to erythromycin, clarithromycin, azithromycin, tetracycline, doxycycline and the newest fluoroquinolones (levofloxacin, sparfloxacin, grepafloxacin, trovafloxacin, gatifloxacin, moxifloxacin)⁽¹⁸⁻²⁰⁾. It has had a tendency to recur and cause persistent infection⁽²¹⁾. Nowadays, the optimum dose and duration of therapy are uncertain. However, the recommended treatment for acute *C. pneumoniae* pneumonia to prevent persistent infections includes a prolonged course (at least 2 or preferably 3 weeks) of doxycycline, erythromycin (2 g/d), newest fluoroquinolones⁽⁵⁾ or azithromycin (1.5 g over 5 days). All our patients improved rapidly after a 2-week course of macrolide, doxycycline, or the newest fluoroquinolones with no evidence of recurrence after one year follow-up.

In summary, we studied twelve patients with *C. pneumoniae* pneumonia. Physicians should consider and search for this infection in patients

Table 3. Characteristics and laboratory data of twelve patients with *C. pneumoniae* pneumonia.

Patient No.	Age/Sex	Co-morbid diseases	Presence of URTI	C. <i>pneumoniae</i> titer (Acute/Convalescent)*	IgM	IgG	Sputum Culture (Bacteria)	Chest Radiographic pattern	IDSA** risk class
1	21/F	-	+	64/NA	1024/NA	NA	Negative	focal segmental	II
2	23/F	-	+	8/8	8/512	NA	Negative	bilateral segmental	II
3	27/M	-	+	neg/NA	2048/NA	NA	Negative	bilateral airspace	IV
4	24/M	PAR, asthma	+	neg/64	1024/1024	32/256	Negative	focal segmental	II
5	29/F	PAR, asthma	-	64/neg	512/2048	32/256	Negative	focal segmental	II
6	30/M	PAR, asthma	+	64/32	512/1024	256/256	<i>S. pneumoniae</i>	focal segmental	II
7	34/F	PAR, asthma	-	512/28	1024/2048	128/128	Negative	consolidation	III
8	36/M	-	+	neg/NA	256/NA	256/NA	Negative	focal segmental	II
9	44/M	-	+	8/8	8/256	NA	Normal flora	focal segmental	II
10	52/F	DM	+	neg/8	8/512	NA	Negative	diffuse interstitial	IV
11	60/M	COPD	-	8/8	16/1024	NA	<i>K. pneumoniae</i>	diffuse airspace	V
12	73/F	CHD	+	neg/8	8/512	NA	Negative	diffuse interstitial, bilateral pleural effusion	V

* microimmunofluorescence (MIF); URTI = upper respiratory tract infection; neg = negative; NA = not applicable; PAR = perennial allergic rhinitis; DM = diabetes mellitus;

** COPD = chronic obstructive pulmonary disease; CHD = coronary heart disease

** The Infectious Disease Society of America (IDSA) Scoring System(19).

with atypical pneumonia and no definite etiologic organisms, particularly in elderly patients with comorbid diseases.

ACKNOWLEDGEMENTS

The authors would like wish to thank Professor J Thomas Grayston (Washington Research Foundation, Seattle, USA) for providing elementary body *C. pneumoniae* antigen; Pranee Thawatsupha; Sunthareeya Waicharoen, National

Institute of Health, Department of Medical Sciences, Ministry of Public Health; Col. Prasart Laothavorn; Col. Krisada Duangurai, Col. Nopadol Wora-Urai, and Maj. General Boonlert Chuntarapas, Pramongkutkla Hospital, Bangkok; Ubonrat Ririem, expert technical assistance and Jitra Tupkate for specimen collections. This report was partly funded by Ratchadapiseksomphoch Fund, Chulalongkorn Hospital and Pramongkutkla College of Medicine, Bangkok 10400, Thailand.

(Received for publication on July 3, 2000)

REFERENCES

1. Everett KD, Bush RM, Andersen AA. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. *Int J Syst Bacteriol* 1999; 49: 415-40.
2. Grayston JT, Campbell LA, Kuo CC, et al. A new respiratory tract pathogen: *Chlamydia pneumoniae* strain TWAR. *J Infect Dis* 1990; 161: 618-25.
3. Grayston JT. *Chlamydia pneumoniae* (TWAR) In: Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases. 4ed, New York: Churchill Livingstone 1995: 1696-701.
4. Kauppinen M, Saikku P. Pneumonia Due to *Chlamydia pneumoniae*: Prevalence, Clinical Features, Diagnosis, and Treatment. *Clin Infect Dis* 1995; 21: S244-52.
5. Kuo C-C, Jackson LA, Campbell LA, Grayston JT. *Chlamydia pneumoniae* (TWAR) *Clin Microbiol Rev* 1995; 8: 451-61.
6. Mandell L. Community acquired pneumonia, etiology, epidemiology, treatment. *Chest* 1995; 108(Suppl.): 355-425.
7. Marik PE, Iglesias J. Severe community-acquired pneumonia, shock and multiorgan dysfunction syndrome caused by *Chlamydia pneumoniae*. *J Intern Med* 1997; 241: 441-4.
8. Hahn DL, Dodge RW, Golubjatnikov R. Association of *Chlamydia pneumoniae* (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. *JAMA* 1991; 266: 225-30.
9. Hahn DL. *Chlamydia pneumoniae*, asthma, and COPD: what is the evidence? *Ann Allergy Asthma Immunol* 1999; 83: 271-92.
10. Sutithawil W, Fuangtong R, Nunthapisud P, Chantadisai N, Sangahsapaviliyah A. High Seroprevalence of *Chlamydia pneumoniae* Infection in Adults With Allergic Rhinitis and Its Role in Asthmatic Exacerbations (abstract). *Am J Respir Crit Care Med* 1999; 159:A517.
11. Mattila KJ, Valtonen VV, Nieminen MS, Asikainen S. Role of Infection as a Risk Factor for Atherosclerosis, Myocardial Infarction, and Stroke. *Clin Infect Dis* 1998; 26: 719-34.
12. Saikku P, Leinonen M, Mattila K, et al. Serological evidence of an association of a novel *Chlamydia*, TWAR, with chronic coronary heart disease and acute myocardial infarction. *Lancet* 1988; 2: 983-6.
13. Muhlestein JB. Chronic Infection and Coronary Artery Disease. In Risk Factor Modification for Cardiac Disease. *Med Clin North Am* 2000; 84: 123-48.
14. Danesh J, Collins R, Peto R. Chronic infections and coronary heart disease: is there a link? *Lancet* 1997; 350: 430-6.
15. Ramirez JA. Isolation of *Chlamydia pneumoniae* from the coronary artery of a patient with coronary atherosclerosis. *Ann Intern Med* 1996; 125: 979-82.
16. Nunthapisud P, Tatiyakavee K, Prapphal N, Likitnukul S, Grayston JT. The prevalence of *Chlamydia pneumoniae*, strain TWAR, antibody in school children: a preliminary study. *Chula Med J* 1992; 36: 273-7.
17. McConnell CT, Plouffe JF, File TM, et al. Radiographic appearance of *Chlamydia pneumoniae* (TWAR strain) respiratory infections. *Radiology* 1994; 192: 819-24.
18. Robin PM, Montalban G, Hammerschlag MR. *In vitro* activity of OPC-17116, a new quinolone, ofloxacin and sparfloxacin against *Chlamydia pneumoniae*. *Antimicrob Agents Chemother* 1994;

38: 1402-3.

19. Bartlett JG, Breiman RF, Mandell LA, File, Jr TM. Community-Acquired Pneumonia in Adults: Guidelines for Management. *Clin Infect Dis* 1998; 26: 811-38.

20. Hammerschlag MR. Activity of Quinolones Against *Chlamydia pneumoniae*. *Drugs* 1999; 58 (Suppl 2): 78-81.

21. Hammerschlag MR, Chirgwin K, Roblin PM, et al. Persistent Infection with *Chlamydia pneumoniae* following Acute Respiratory Illness. *Clin Infect Dis* 1992; 14: 178-82.

การศึกษาลักษณะทางคลินิกในผู้ป่วยปอดอักเสบจากเชื้อ *Chlamydophila (Chlamydia) pneumoniae* (TWAR)†

ุณิชัย สุทธิสวัสดิ์, พ.บ.*, ปิยะดา หวังรุ่งทรัพย์, วท.ม.**, พิมพ์ใจ นัยโกวิท, วท.บ., M.T.**, ผ่องพรรณ นันทากิสุทธิ์, วท.ม.***, นงลักษณ์ ฉันหาดศัย, พ.บ.****, ยงยุทธ พลอยส่องแสง, พ.บ., D.Sc., FCCP.*****

คณะกรรมการได้ทำการศึกษาลักษณะทางคลินิกของผู้ป่วยปอดอักเสบที่เกิดจากการติดเชื้อ *Chlamydophila (Chlamydia) pneumoniae* (TWAR) ในผู้ป่วยไทยที่เข้ามารับการตรวจรักษาที่โรงพยาบาลพระมงกุฎเกล้าจำนวน 12 ราย อายุเฉลี่ย 38 ปี (ช่วงอายุ 21-73 ปี) ผู้ป่วย 6 รายมีภูมิลำเนาอยู่ในกรุงเทพมหานคร ผู้ป่วย 7 รายมีโรคเรื้อรังได้แก่ โรคหอบหืด และภูมิแพ้ (4 ราย), โรคเบาหวาน (1 ราย), โรคหลอดลมอักเสบอุดกั้นเรื้อรัง (1 ราย), และโรคหลอดเลือดหัวใจดีบ (1 ราย) ภาวะปอดอักเสบเป็นชนิดกึ่งเฉียบพลัน 6 ราย ส่วนใหญ่มีอาการทางคลินิกไม่รุนแรง (IDSA risk class I-III) มีเพียง 4 รายที่มีอาการรุนแรง (IDSA risk class IV-V) เมื่อจามมอร์ครีวิร่วมด้วย การวินิจฉัยภาวะนี้ใช้การตรวจเลือดด้วยวิธีมาตรฐาน microimmuno fluorescence (MIF) โดยใช้เกลนท์การวินิจฉัยเมื่อระดับแอนติบอดีต่อเชื้อ *C. pneumoniae* ชนิด IgM $\geq 1:16$ และหรือ IgG $\geq 1:512$, IgA $\geq 1:256$ หรือผลการตรวจเลือดชั้ราษฎร์เวลา 2-3 เดือน ต่อมาพบระดับแอนติบอดีเพิ่มขึ้น 4 เท่าและมากกว่า ผู้ป่วย 6 รายมีลักษณะทางคลินิกเข้าได้กับการติดเชื้อปฐมภูมิ (IgM $\geq 1:16$) และผู้ป่วย 6 รายมีลักษณะเข้าได้กับการติดเชื้อซ้ำ (IgG $\geq 1:512$ หรือ IgA $\geq 1:256$ หรือผลการตรวจเลือดชั้ราษฎร์เพิ่มขึ้นกิน 4 เท่าโดยไม่พบระดับแอนติบอดีต่อเชื้อชนิด IgM) พบน้ำในช่องเยื่อหุ้มปอดเล็กน้อยในผู้ป่วย 1 ราย และพบการติดเชื้อชนิดอื่นร่วมด้วย 2 ราย ได้แก่เชื้อ *S. pneumoniae* และ *K. pneumoniae* ผู้ป่วยทุกรายหายเป็นปกติหลังได้รับการรักษาด้วยยาปฏิชีวนะ macrolide, doxycycline หรือ fluoroquinolones รุนใหม่ เป็นระยะเวลาอย่างน้อย 2 สัปดาห์ ไม่พบโรคแทรกซ้อนหรือเกิดการกลับเป็นซ้ำในระยะเวลา 1 ปีต่อมา ได้เคยมีรายงานการศึกษาทางด้านระบาดวิทยา พบรความชุกของการติดเชื้อชนิดนี้ในเด็กไทย 37% ในปี 2535 และ 100% ในกลุ่มผู้ป่วยหอบหารเกนท์ในปี 2542 รายงานนี้ เป็นรายงานลักษณะทางคลินิกของผู้ป่วยไทยที่ป่วยด้วยอาการปอดอักเสบที่เกิดจากการติดเชื้อ *C. pneumoniae* รายงานแรกของประเทศไทย

คำสำคัญ : แคลมมิโอดิฟิลล่า นิวโนโนวิ, แคลมมิเดีย นิวโนโนวิ, ทาวร์, ปอดอักเสบ, ภาวะติดเชื้อของระบบทางเดินหายใจ ส่วนล่าง, ภาวะติดเชื้อของระบบทางเดินหายใจส่วนบน, โพรงจมูกอักเสบ, ไมโครอิมมูโนฟลูออเรสเซนท์, ฟลูออโรคริวินโนโนรอน, ประเทศไทย

ุณิชัย สุทธิสวัสดิ์, ปิยะดา หวังรุ่งทรัพย์, พิมพ์ใจ นัยโกวิท,
ผ่องพรรณ นันทากิสุทธิ์, นงลักษณ์ ฉันหาดศัย, ยงยุทธ พลอยส่องแสง
จดหมายเหตุทางแพทย์ฯ 2544; 84: 430-437

- * หน่วยโรคภูมิแพ้, โรงพยาบาลพระมงกุฎเกล้า, ด.ราชวิถี, กรุงเทพฯ 10400
- ** สถาบันวิจัยวิทยาศาสตร์สาธารณสุขแห่งชาติ, กรมวิทยาศาสตร์การแพทย์, กระทรวงสาธารณสุข, นนทบุรี 11000
- *** ภาควิชาจุลทรรศวิทยา, โรงพยาบาลจุฬาลงกรณ์, กรุงเทพฯ 10330
- **** หน่วยโรคปอด, โรงพยาบาลพระมงกุฎเกล้า, ด.ราชวิถี, กรุงเทพฯ 10400
- ***** หน่วยโรคปอดและเวชบำบัดวิถีดี, โรงพยาบาลบำบัดรุ่งราษฎร์, กรุงเทพฯ 10400
- † เสนอรายงานการศึกษาขั้นต้น ในการประชุมวิชาการประจำปี ครั้งที่ 13 ราชวิทยาลัยอายุรแพทย์แห่งประเทศไทย วันที่ 22-25 เมษายน 2540 ณ โรงพยาบาลปทุมวัน จ.เชียงใหม่