

Posterolateral Fusion with Autogenous Laminospinous Process Bone Graft

**PINIT HIRUNYACHOTE, M.D., FRCST., FRCOST.*,
WALLOP ADULKASEM, M.D., FRCST., FRCOST.***

Abstract

The results of posterolateral spinal fusion by using autogenous iliac bone graft is gold standard. However, there are some undesirable effects at the donor site. This study reports the outcome of posterolateral spinal fusion by using an autogenous bone graft from the lamina and spinous process.

From June 1993 to May 2001, Decompressive laminectomy, pedicle screw fixation system and posterolateral fusion were performed on 92 patients using autogenous bone from the decompressive laminectomy procedure. The follow-up periods were 2-8 years. 97.56 per cent of the patients had a solid fusion mass at 6 months after operation. There were no undesirable effects at the iliac region. The JOA score for low back pain improved in all patients.

The result of posterolateral spinal fusion by using autogenous bone from the lamina and spinous process is comparable to the autogenous iliac bone graft. The advantages of using the laminospinous process bone graft are short operating time, less blood loss than taking a bone graft from the iliac crest, no complication or undesirable effects at the iliac region.

Key word : Posterolateral Fusion, Laminospinous Process Bone Graft

**HIRUNYACHOTE P & ADULKASEM W
J Med Assoc Thai 2002; 85: 1105-1112**

Posterolateral spinal fusion along with the pedicular screw fixation system for lumbar instability is now widely accepted(1-10), but the results in some

reports are not so good(11,12). Most articles reported a good outcome of fusion using the autogenous iliac bone graft(1-10). However, undesirable effects may

* Orthopedic Department, Nakhon Pathom Hospital, Nakhon Pathom 73000, Thailand.

Table 1. Show age groups of patients.

Age (year)	Female 74	Male 18
47-55	10	1
56-65	18	6
66-75	35	9
76-85	11	2

Table 3. Show number of patients in each group of fusion level.

Fusion level	JOA score average	No. of patients
1 level	20	18
2 levels	18	23
3 levels	17	32
4 levels	16	19

occur at the donor site: such as pain, soreness of the gluteal muscle, hematoma, infection, paresthesia and numbness or even pelvic fracture(13-15). Allograft has also been introduced as a substitute for autogenous iliac bone graft. Due to slow incorporation of the graft, low fusion rate(16,17), infection and fear of HIV disease(18-21), new substances for bone substitution have been studied as an artificial bone substitutes(22-24). So far, these substances are very expensive and not available in Thailand. This article shows the results of posterolateral spinal fusion and pedicle screw fixation with a bone graft from the lamina and spinous process which was taken from the decompressive laminectomy procedure.

MATERIAL AND METHOD

From June 1993 to May 2001, on 92 cases with lumbar-instability and lumbar-stenosis, decompressive laminectomy, posterolateral fusion and pedicular screw system fixation were performed. 61 cases had grade 1-2 degenerative spondylolisthesis, 22 cases had grade 1-2 isthmic spondylolisthesis with canal stenosis, the rest had lumbar stenosis with lumbar-instability according to White- Panjabi criterion. The age range was from 47-85 years, average 67 years. There were 74 females and 18 males. The JOA score for low back pain was 15-20 points, average 18 points. One case had foot drop on the left side and another case already had loss of right big toe dorsiflexion before the operation. 18 cases underwent one level fusion, 23 cases had 2 levels fusion,

Table 2. Show type of instability.

Type	Number of patients
Grade 1 listhesis	61
Grade 2 listhesis	22
L-instability	9

Table 4. Show the fusion rate and number of patients of each groups.

Fusion level	% of fusion	Number of patients
1 level (16)	100	16
2 level (19)	100	19
3 level (29)	96.55	28
4 level (18)	94.44	17

32 cases had 3 levels fusion and 19 cases had 4 levels fusion. (Table 1-3) The types of pedicular screw fixation were 56 cases of Diapason, 31 cases of Universal spinal system and 5 cases of Xia.

Fig. 1 (A).

The 3rd year follow-up X-ray pictures of 76 years old woman, who was performed decompressive laminectomy and PL fusion with laminospinous process bone graft.

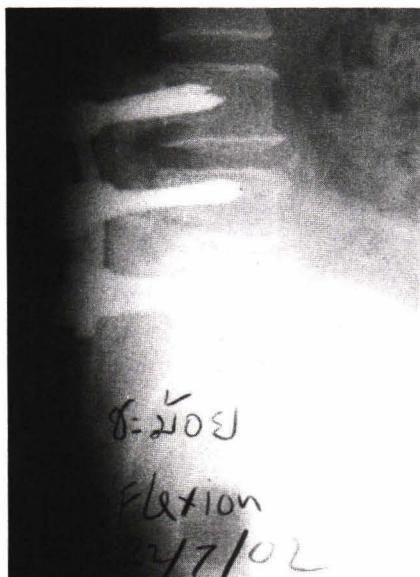
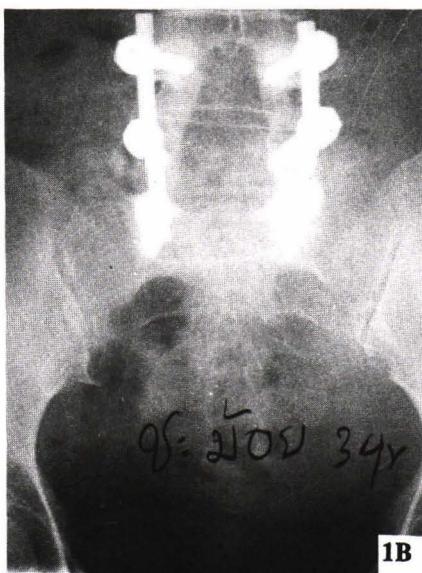



Fig. 1 (B-E). The 3rd year follow-up X-ray pictures of 76 years old woman, who was performed decompressive laminectomy and PL fusion with laminospinous process bone graft.

Operative technique

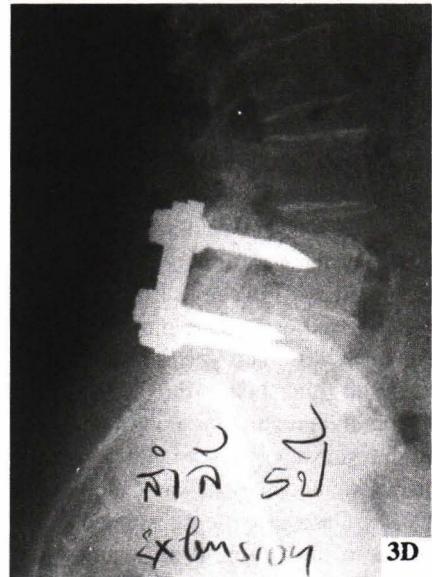
The patient was placed in the prone position. Posterior midline incision from the skin through the lamina was performed. Paraspinal muscles were detached from the bone to expose the lamina and transverse process. Decompressive laminectomy was performed centrally, lateral recess and lateral canal.

Pedicular screws were placed nearly parallel and bi-cortically by the Nakhonpathom technique(25). The recipient base was prepared by decortication at facets, the remaining lamina and transverse processes(26, 27). Bone from the lamina and spinous process was morselized to 2-3 mm in size and used as the bone graft. Rods were contoured and connected constrainly

Fig. 2 (A-D). The 6th year follow-up X-ray pictures of 72 years old woman, who was performed decompressive laminectomy and PL fusion with laminospinous process bone graft.

to the pedicular screws. Suction drainage was placed. Soft tissues were sutured layer by layer. The patient was permitted to be in the upright position in bed one day after the operation. Suction drainage was removed 2-3 days after the operation depending on the amount of drainage. Then the patient was per-

mitted to ambulate with lumbosacral support without bending forward for at least 3 months or until the X-ray showed the signs of bone union. The patient was interviewed and the X-rays were taken at 6 weeks, 3, 6 months and annually to evaluate the clinical results and fusion mass(28).


3A

3B

3C

3D

Fig. 3 (A-D). The 5th year follow-up X-ray pictures of 52 years old woman, who was performed decompressive laminectomy and PL fusion with laminospinous process bone graft.

RESULTS

The operating time ranged from 90-210 minutes and estimated blood loss was 150-600 ml. There was superficial wound infection in 3 cases which resolved after partial stitch removal and oral antibiotics. There were subcutaneous haematoma in 4 cases, which subsided in 3 weeks without any inter-

vention. The follow-up time was 2-8 years, average 4.2 years. 10 cases were lost to follow-up. All patients were relieved of the heaviness and tightness in both legs immediately after the operation. The JOA scores for low back pain were improved to average 26 points at one year follow-up. The numbness recovered in time varying from the early post-operatively period

to 2 years. There was no recovery of muscle function in the foot drop case but the patient recovered from loss of dorsiflexion of the big toe after 2 years. There was 97.56 per cent fusion rates in this series, 100 per cent in 1 level fusion (16 patients), 100 per cent in 2 levels fusion (19 patients), 96.55 per cent fusion in 3 levels fusion (29 patients) and 94.44 per cent in 4 levels fusion (18 patients). (Table 4) There were 2 cases of non union at the L5-S1 level. One in 3 levels fusion and one in 4 levels fusion. The X-ray showed a solid fusion mass 6 months post-operatively. There were no serious complications in the present series. (Fig. 1-3)

DISCUSSION

It is generally accepted that the best bone for grafting is autogenous bone from the iliac crest. However, it needs an extra operation to harvesting the graft. This may cause some undesirable complications to the patient such as pain, numbness, paresthesia, clunial nerve injury, hematoma, infection or even major complications such as sciatic nerve injury, hernia and pelvic fracture(13-15). To prevent these problems, many substances or methods have been studied to replace the autogenous iliac bone graft. Allograft is the optimum solution for this problem, but due to religious reasons, slow incorporation, low fusion rate(16,17), bacterial contamination and fear of HIV transmission(18-21) other substances have been studied to replace it. Bone morphogenetic protein (BMP) and osteogenic protein-1 (OP-1) have now been studied in many forms in order to promote fusion and substitute bone graft(22-24). Because of difficulties in the preparation along with the unstable form of the substance, this method is still being researched. Calcium sulphate and Calcium phosphate cement (CPC) are also being studied.

There are a report of using autogenous bone from the decompressive laminectomy proce-

dure which is another way to solve the problem(29). To achieve fusion of the spine, the following factors need to be considered. Spinal instrumentation is necessary to stabilize the spine to increase the fusion rate(2,30). So far, the pedicular screw system is the most modest and stable spinal instrument. However, to get good results, two factors need to be achieved. First, a good bone grip on the screw thread. Second, constraint of the screw rod connection. The constraint of the connection can be created easily *in vitro* but not *in vivo* due to the multi-directional angulation of the screws and the rod is difficult to bend to fit all the screws. To overcome this problem, a ball ring and polyaxial screw head have been developed by many companies. The fusion technique really different from bone grafting. The later only places the bone in one place but the former also concerns the recipient bed preparation, vascularity of the bed, type and size of bone graft, and the stability of the unit. Even though the quality of bone from the lamina and spinous process can't be compared with bone from the iliac crest, the operative techniques are strictly done as mentioned above. The results from the present series are still comparable to other reports in terms of fusion rate, time of fusion, complications, and daily activity of the patients. This present study revealed a short operating time, little blood loss and no undesirable complications at the iliac crest region which are better than other reports.

SUMMARY

From the present study, autogenous bone from the lamina and spinous process can be used as a bone graft for posterolateral fusion instead of the autogenous iliac bone graft with comparable results of the fusion rate, fusion time and clinical results, but with a better operating time, blood loss and fewer complications at the iliac region.

(Received for publication on June 24, 2002)

REFERENCES

- Booth KC, Bridwell KH, Eisenberg BA, Baldus CR, Lenke LG. Minimum 5-year results of degenerative spondylolisthesis treated with decompression and instrumented posterior fusion. Spine 1999; 24: 1721-7.
- Kotani Y, Cunningham BW, Cappuccino A, Kaneda K, McAfee PC. The role of spinal instrumentation in augmenting lumbar posterolateral fusion. Spine 1996; 21: 278- 87.

3. Laus M, Tigani D, Pignatti G, et al. Posterolateral spinal fusion : A study of 123 cases with a long-term follow-up. *Chir Organi Mov* 1994; 79: 69-79.
4. Musha Y, Okajima Y, Motegi M. Lumbar spinal fusion using the Diapason system. *J Spinal Disord* 1995; 8 (Suppl): S7-14.
5. Parisini P, Miglietta A, Martini A, Greggi T. Lumbosacral fusion with pedicular osteosynthesis. *Chir Organi Mov* 1994; 79: 81-4.
6. Rechtine GR, Sutterlin CE, Wood GW, Boyd RJ, Mansfield FL. The efficacy of pedicle screw/plate fixation on lumbar/lumbosacral autogenous bone graft fusions in adult patients with degenerative spondylolisthesis. *J Spinal Disord* 1996; 9: 382-91.
7. Roy-Camille R, Benazet JP, Desauge JP, Kuntz F. Lumbosacral fusion with pedicular screw plating instrumentation. A 10-year follow-up. *Acta Orthop Scand Suppl* 1993; 251: 100-4.
8. Schwab FJ, Nazarian DG, Mahmud F, Michelsen CB. Effects of spinal instrumentation on fusion of the lumbosacral spine. *Spine* 1995; 20: 2023-8.
9. Wang PJ, Chen WJ, Chen LH, Niu CC. Spinal fusion and pedicle screw instrumentation in the treatment of spondylolisthesis over the age of 60. *Changgeng Yi Xue Za Zhi* 1998; 21: 436-41.
10. Wood GW, Boyd RJ, Carothers TA, et al. The effect of pedicle screw/plate fixation on lumbar/lumbosacral autogenous bone graft fusions in patient with degenerative disc disease. *Spine* 1995; 20: 819-30.
11. Bernhardt M, Swartz DE, Clothiaux PL, Crowell RR, White AA. Posterolateral lumbar and lumbosacral fusion with and without pedicle screw internal fixation. *Clin Orthop* 1992; 284: 109-15.
12. Pihlajamaki H, Bostman O, Ruuskanen M, Myllynen P, Kinnunen J, Karaharju E. Posterolateral lumbosacral fixation: 63 consecutive cases followed for 4 (2-6) years. *Acta Orthop Scand* 1996; 67: 63-8.
13. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. *Clin Orthop* 1996; 329: 300-9.
14. Bloomquist DS, Feldman GR. The posterior ilium as a donor site for maxillo-facial bone grafting. *J Maxillofac Surg* 1980; 8: 60-4.
15. Seiler JG, Johnson J. Iliac crest autogenous bone grafting: Donor site complications. *J South Orthop Assoc* 2000; 9: 91-7.
16. Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. *Clin Orthop* 2000; 371: 38-45.
17. Zdeblick TA, Ducker TB. The use of freeze-dried allograft bone for anterior cervical fusions. *Spine* 1991; 16: 726-9.
18. Cook SD, Salkeld SL, Prewett AB. Simian immunodeficiency virus (human HIV-II) transmission in allograft bone procedures. *Spine* 1995; 20: 1338-42.
19. Norman-Taylor FH, Villar RN. Bone allograft: A cause of concern? *J Bone Joint Surg* 1997; 79B: 178-80.
20. Sanzén L, Carlsson A. Transmission of human T-cell lymphocytotropic virus type 1 by a deep-frozen bone allograft. *Acta Orthop Scand* 1997; 68: 72-4.
21. Segur JM, Suso S, García S, Combalía A, Ramón R. Bone allograft contamination in multiorgan and tissue donors. *Arch Orthop Trauma Surg* 1998; 118: 156-8.
22. Boyne P. Application of bone morphogenetic proteins in the treatment of clinical oral and maxillo-facial osseous defects. *J Bone Joint Surg Am* 2001; 83A (Suppl 1): S146-50.
23. Grauer JN, Patel TC, Erulkar JS, Troiano NW, Panjabi MM, Friedlaender GE. 2000 young investigator research award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. *Spine* 2001; 26: 127-33.
24. Boden SD, Martin GJ, Morone MA, Ugbo JL, Moskowitz PA. Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. *Spine* 1999; 24: 1179-85.
25. Hirunyachote P, Adulkasem W. Critical Assessment of Transpedicular Screw Fixation. *J Orthop Surg* 1997; 5: 17-20.
26. Kim KW, Ha KY, Moon MS, et al. Fate of the facet joints after instrumented intertransverse process fusion. *Clin Orthop* 1999; 366: 110-9.
27. Deen GH. Lumbar transverse process for posterolateral fusion. *J Neurosurg* 2000; 93: 332-4.
28. Christensen FB, Laursen M, Gelineck J, et al. Interobserver and intraobserver agreement of radiograph interpretation with and without pedicle screw implants : The need for a detailed classification system in posterolateral spinal fusion. *Spine* 2001; 26: 538-43; discussion 543-4.
29. Graham CE. Lumbosacral fusion using internal fixation with a spinous process for the graft: A review of 50 patients with a five-year maximum follow-up. *Clin Orthop* 1979; 139: 72-7.
30. Gunzburg R, Hutton WC. Effects of posterior instrumentation on axial rotation of the lumbar spine : An *in vitro* biomechanical study. *J Spinal Disord* 1995; 8: 103-10.

การผ่าตัดเชื่อมกระดูกสันหลังชนิด posterolateral โดยใช้กระดูกจาก lamina และ spinous process

พินิจ หิรัญโชติ, พ.บ. FRCST, FRCOST.*
วัลลภา อดุลย์เกشم, พ.บ. FRCST, FRCOST.*

การผ่าตัดเชื่อมกระดูกสันหลังชนิด posterolateral โดยการใช้กระดูกจากเชิงกรานของผู้ป่วยเอง เป็นที่ยอมรับโดยทั่วไปและถือเป็นมาตรฐาน การผ่าตัดนี้กระดูกเชิงกรานเพื่อการเชื่อมกระดูกนั้นอาจเกิดอาการไม่พึงประสงค์ได้ เพื่อหลีกเลี่ยงอาการดังกล่าว รายงานนี้ได้แสดงผลการผ่าตัดเชื่อมกระดูกสันหลังชนิด posterolateral โดยใช้กระดูกจาก lamina และ spinous process ที่ได้จากการหั่นต่อนการหั่น decompressive laminectomy

ผู้ป่วยจำนวน 92 คน ได้รับการผ่าตัด decompressive laminectomy และเชื่อมกระดูกสันหลังชนิด posterolateral โดยใช้กระดูกจาก lamina และ spinous process และใช้ pedicular screw system ยึดตัวร่อง ในระหว่างช่วงเดือนมิถุนายน พ.ศ. 2536 ถึง เดือนพฤษภาคม พ.ศ. 2544 ติดตามผลการผ่าตัดเป็นระยะเวลา 2-8 ปี ผู้ป่วยจำนวน 80 จาก 82 ราย คิดเป็น 97.56 เปอร์เซ็นต์ มีการเชื่อมติดของกระดูกสันหลังอย่างแข็งแรง ในระยะเวลาประมาณ 6 เดือนหลังการผ่าตัดและอาการของพยาธิสภาพทางระบบประสาท และกล้ามเนื้อทุกเจลลิ่ง

ผลการเชื่อมของกระดูกสันหลังโดยการใช้กระดูกจาก lamina และ spinous process สามารถเทียบเคียงได้กับการใช้กระดูกจากเชิงกราน แต่มีข้อดีกว่าในเชิงของระยะเวลาที่ใช้ในการผ่าตัด จำนวนเลือดที่สูญเสียในระหว่างผ่าตัดและอาการไม่พึงประสงค์ที่เกิดขึ้นที่บีบเวณเชิงกราน

คำสำคัญ : การเชื่อมกระดูกสันหลังชนิด posterolateral, กระดูกส่วน laminospinous process

พินิจ หิรัญโชติ, วัลลภา อดุลย์เกشم
จุฬาลงกรณ์มหาวิทยาลัย ชั้น 4 ตึกวิทยาศาสตร์ โทร. 0-2218-1105-1112

กลุ่มงานศัลยกรรมอโณติดิกส์ โรงพยาบาลศรีปฐม นนทบุรี 73000