

B Vitamins, Vitamin C and Hematological Measurements in Overweight and Obese Thais in Bangkok

TALABPORN HARNROONGROJ, B.Sc., M.Sc., Dr.oec.troph.*; PORNRUTSAM JINTARIDHI, B.Sc., M.Sc.*; NIYOMSRI VUDHIVAI, B.Sc., M.Sc.*; RUNG SUNN TUNGTRONGCHITR, Ph.D.*; SUPRANEE CHANGBUMRUNG, B.Sc., M.Sc., Dr.agr.*; PRANEET PONGPAEW, B.Sc., M.S., M.Sc.*; BENJALUCK PHONRAT, M.Sc.**, FRANK PETER SCHELP, Dr.med., D.T.M.&H., D.Sc.***

Abstract

The dynamic changes of socio-economics leading to the industrialisation of countries are known to affect lifestyle and nutritional behaviours of the population. Review of the literature on the prevalence of obesity showed increasing numbers of the overweight and obese during the past decade. However, information on health and nutritional status of the obese in Thailand has not been widely publicized. This study reveals the vitamin status and hematological picture in 270 overweight and obese Thais in Bangkok, Thailand, compared with 175 normal subjects. No statistically significant differences in haemoglobin and hematocrit were observed in the overweight compared with the control subjects. The prevalence of anaemia was 9.8 per cent among male and 17.2 per cent among female overweight and obese subjects compared with 2.6 per cent and 21.2 per cent in male and female normal controls using the cut-off point of haemoglobin concentration as an indicator of anaemia. Prevalence of hypertension was exhibited in both male and female overweight and obese subjects. Even if there were no statistically significant differences in vitamin B₁, B₂ and B₆ in overweight and obese subjects compared with the controls, high percentages of vitamin C and vitamin B₂ deficiencies were observed. Vitamin B₂ deficiency was detected in 19.7 per cent of overweight and obese males as well as in 28.7 per cent of overweight and obese females using glutathione reductase activity coefficient (α EGR) < 1.5 as the cut-off point. However, clinical signs of vitamin B₂ deficiencies were rare. There was also a high percentage of vitamin C (antioxidant vitamin) deficiency in 51.5 per cent of the overweight and obese subjects and 41.7 per cent of the controls, respectively. The results suggest more attention should be paid

to health study and nutritional problems for the overweight and obese population, especially concerning vitamins and oxidative stress. Further research is still needed in these aspects.

Key word : Thiamin, Riboflavin, Pyridoxin, Vitamin C, Anaemia, Obese

HARNROONGROJ T, JINTARIDHI P, VUDHIVAI N, et al

J Med Assoc Thai 2002; 85: 17-25

* Department of Tropical Nutrition and Food Science,

** Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

*** Department of Epidemiology, Institute of Social Medicine, Faculty of Medicine, Free University, Berlin, Germany.

The prevalence of obesity has increased dramatically over the past decade⁽¹⁾. It has been reported that over 22 per cent of the adult American population is obese (body mass index, BMI ≥ 30 kg/m²), with the prevalence in some ethnic groups approaching 40 per cent^(1,2). The prevalence of overweight and obesity (BMI ≥ 25 kg/m²) has not increased in the same manner, but it includes another one-third of the population. The fact that Thailand is rapidly approaching the status of a newly industrialised country is well reflected in some demographic and economic indicators⁽³⁾. A total of 23.6 per cent of Thai female construction site workers was reported to be obese⁽⁴⁾. Obesity is found in 11 per cent of Thai elderly⁽⁵⁾. Moderate to severe obesity is increasingly found and might be associated with clear health risks, including hypertension, diabetes and dyslipidemia⁽⁶⁾.

In the past few years, there have been dramatic advances in the research of overweight and obese Thais. Exploratory papers have reported abnormal lipid profiles⁽⁷⁾, erythrocyte antioxidant enzyme⁽⁸⁾, and serum leptin⁽⁹⁾. Therefore, this study investigated vitamin B and C status and hematological measurements in healthy, overweight and obese Thai people compared with apparently healthy subjects in order to provide preliminary baseline information for further studies, health promotion and nutritional intervention.

MATERIAL AND METHOD

Study Population

Sixty-one male and 209 female overweight and obese Thai volunteers, including 38 male and 137 female normal subjects, comprised the study population. Thai volunteers who attended the Out-patient Department, General Practice Section, Rajvithi Hospital, Bangkok, for a physical check-up, were investigated in this study. They all attended the clinic of their own accord and were well except for minor ailments and the typical diseases of obese people such as hypertension, mild to moderate degree of cardiovascular diseases and non-insulin dependent diabetes mellitus, which were diagnosed by physical and biochemical laboratory examinations for the inclusion criteria. Age, marital status, place of origin, drinking and smoking habits were assessed by standardised questionnaires. The same medical doctor conducted physical examinations throughout the study.

Analytical method

The body weight, of each individual dressed in light clothing, was measured using a carefully calibrated beam balance (Detecto®, Detecto Scale Manufacturing, USA). Height measurements were taken using a vertical-measuring rod. The BMI or Quetelet's index was conventionally calculated as weight in kg/(height in metres)². The classifications

of BMI employed were those used by the WHO Expert Committee 1995(10), overweight grade I: $BMI=25.00-29.99 \text{ kg/m}^2$; grade II (obese): $BMI=30.00-39.99 \text{ kg/m}^2$; grade III (obese): $BMI\geq40 \text{ kg/m}^2$.

From the subjects under study, about 10 ml of venous blood was taken in the morning after fasting overnight. Heparinised blood was used to determine haemoglobin and hematocrit (packed cell volume). Haemoglobin concentration in whole blood was determined by the modified cyanomethemoglobin method(11). Hematocrit was measured by the micromethod using calibrated heparinised capillary tubes. The tubes of blood were centrifuged for five minutes at 14,000 g (IEC MB microhematocrit centrifuge). Hematocrit was measured using a microhematocrit reader (Hawksley, England). Mean corpuscular haemoglobin concentrations (MCHC) were calculated by dividing the haemoglobin concentration (g/dl) with the hematocrit (%), multiplied by 100.

Red blood cell haemolysate was prepared and stored at -20°C for not longer than one week and used afterwards for vitamin B₁, B₂ and B₆ determinations. The active form of vitamin B₁, B₂, and B₆ are very important coenzymes in many biological mechanisms. In particular, the activity of the erythrocyte enzymes transketolase (ETK), glutathione reductase (EGR) and aspartate aminotransferase (EAST) and their activation coefficients (AC) after stimulation with the respective coenzymes are sensitive indicators of the nutritional status of thiamin, riboflavin and pyridoxin, respectively(12). Vitamin B₁ status was assessed using erythrocyte transketolase activity(12). The values of 1.25α ETK (activation coefficient) and above indicate a real deficiency in vitamin B₁ status. Vitamin B₂ status was assessed using erythrocyte glutathione reductase activity(13). Values of 1.5α EGR and above indicate a deficiency in vitamin B₂ status(14). Vitamin B₆ status was assessed using erythrocyte aspartate aminotransferase activity(15). Values of 2.00α EAST and above indicate a deficiency in vitamin B₆ status. Serum vitamin C was determined according to the method described by Liu et al(16). Values below 5 $\mu\text{g/l}$ indicate a deficiency in vitamin C.

Blood pressure was recorded in a sitting position, using a standardised automatic electronic blood pressure meter.

Statistical analysis

The results were expressed as median, range, and 95 per cent confidence interval (CI). The data were coded and analyzed by using a standard statistical method provided by the Minitab computer programme(17).

RESULTS

Median, range and 95 per cent confidence interval (CI) of age, anthropometric variables, hematological measurements and vitamin status in overweight and control subjects are shown in Table 1. No statistically significant differences in haemoglobin and hematocrit from controls were observed in the overweight, except for MCHC which was higher in the overweight and obese than in the control subjects. Blood pressure was found to be statistically significantly higher in the overweight and obese than that of the control subjects. No statistically significantly differences in vitamin B₁, B₂, B₆ in the overweight and obese were found compared with the control subjects. The medians of vitamin C concentration of the overweight and obese was significantly lower than those of the controls (Table 1). However, only the female overweight and obese showed a statistically significant difference of vitamin C concentration compared with female control subjects (Table 2).

The number and percentage of individuals with hypertension, anaemia and vitamin deficiencies in overweight and obese subjects are shown in Table 3. Prevalence of hypertension was found in both male and female overweight and obese subjects when compared with controls. Prevalence of anaemia was found in the female overweight and obese subjects (17.2% in females, 9.8% in males). The magnitude of anemia was not different from the control group.

The vitamin status of the overweight and obese subjects represented as deficiencies in percentage using the reference cut-off point is shown in Table 3. Vitamin B₂ deficiency in the overweight and obese males was 19.7 per cent compared to 28.7 per cent in the overweight and obese females. There was a high percentage of vitamin C deficiency (51.5% in both sexes) compared to 41.7 per cent in the controls.

Table 4 shows the correlation coefficients between various parameters in the overweight males

Table 1. Median, range and 95 per cent confidence interval (CI) of age, anthropometric variable, blood pressure and vitamin status in the overweight and control subjects.

Parameter	Total				P-value*	
	Overweight (N=270)		Control (N=175)			
	Median (range)	95%CI	Median (range)	95%CI		
Age (yrs)	40.0 (18.0-60.0)	38.0-41.0	39.0 (18.0-60.0)	36.0-40.0	0.546	
Weight (kg)	76.0 (54.0-153.0)	74.5-78.5	54.2 (42.5-78.0)	52.8-55.9	0.000	
Height (m)	1.57 (1.45-1.86)	1.56-1.58	1.58 (1.43-1.85)	1.56-1.59	0.222	
BMI (kg/m ²)	30.68 (25.08-56.00)	30.26-31.23	21.90 (18.47-24.97)	21.55-22.22	0.000	
Hb (g/dl)	13.4 (8.3-17.2)	13.2-13.5	13.2 (9.2-17.5)	13.0-13.4	0.178	
Hct (%)	40.0 (26.6-50.0)	39.9-40.6	40.0 (27.8-54.0)	39.6-40.4	0.496	
MCHC (%)	33.9 (23.8-35.9)	33.7-34.1	33.6 (31.5-36.4)	33.3-33.7	0.001	
Diastolic blood pressure	80.0 (57.0-130.0)	80.0-84.0	70.0 (48.0-109.0)	70.0-75.0	0.000	
Systolic blood pressure	130.0 (96.0-190.0)	124.9-130.0	111.0 (88.0-184.0)	110.0-115.5	0.000	
Vitamin B1 (α ETK)	1.08 (0.64-2.39)	1.07-1.11	1.06 (0.66-1.84)	1.04-1.09	0.178	
Vitamin B2 (α EGR)	1.34 (0.91-2.26)	1.31-1.39	1.32 (0.91-2.02)	1.30-1.38	0.136	
Vitamin B6 (α EAST)	1.46 (0.80-2.59)	1.43-1.54	1.50 (1.01-3.40)	1.35-1.57	0.319	
Vitamin C (mg/l)	5.00 (0.00-28.00)	4.50-5.56	6.00 (0.00-23.00)	5.41-6.59	0.023	

BMI = body mass index, Hb= haemoglobin, Hct= haematocrit, MCHC = mean corpuscular haemoglobin concentration
 α ETK = erythrocyte transketolase activity coefficient, α EGR = erythrocyte glutathione reductase activity coefficient,

α EAST = erythrocyte aspartate aminotransferase activity coefficient

*Mann-Whitney U-Wilcoxon Rank Sum W Test (Two-Tailed)

and females, respectively. Significant associations were found between vitamin B₁, B₆, and vitamin C in both the overweight males and females. A negative correlation was found between vitamin B₂, haemoglobin and hematocrit.

DISCUSSION

The distribution of obese subjects in this study, according to the grading of the 1995 WHO group was 43.0, 51.8 and 5.2 per cent for grades I, II and III, respectively, with a predomination of grade II (BMI=30.0-39.99 kg/m²). This result may indicate the need for counselling and controlling the transformation from grade II to grade III. Overweight and obese females in this study group had higher weight and height than the male overweight and obese subjects. Upon grading of overweight by BMI (kg/m²), there was a higher prevalence of grade

III (BMI \geq 40 kg/m²) in females than in males. Unequal numbers of male and female overweight subjects participated in this study arising from the fact that females are generally more willing to volunteer than males and females have a tendency to be more socially active than males(18).

High blood pressure, both systolic and diastolic, in overweight and obese subjects presented as an important problem. Obesity is an important risk factor for the development of hypertension(19). Weight gain promotes hypertension and the risk of hypertension parallels the degree of obesity(20,21). This might lead to an increased risk of heart disease. Advice and support for behavioural modification, including eating a healthy diet and not smoking, which is a major health risk in males, should be recommended, especially in obese subjects.

Table 2. Median, range and 95 per cent (CI) of age, anthropometric variable, blood pressure and vitamin status in the overweight and control subjects between male and female.

Parameter	Overweight (N=61)			Male			Control (N=38)			P-value*	P-value*	
	Median (range)		95%CI	Median (range)		95%CI	Median (range)		95%CI			
	Median (range)	95%CI	Median (range)	95%CI	Median (range)	95%CI	Median (range)	95%CI	Median (range)	95%CI		
Age (yrs)	40.0 (18.0-59.0)	37.8-44.2	40.0 (19.0-54.0)	32.9-42.1	0.327	40.0 (18.0-60.0)	38.0-42.0	38.0 (18.0-60.0)	36.0-40.0	38.0 (18.0-60.0)	0.546	
Weight (kg)	85.0 (62.4-127.0)	81.2-91.1	62.0 (50.7-78.0)	60.0-64.5 1	0.000	74.2 (54.0-153.0)	72.8-75.7	52.5 (42.5-78.0)	51.8-54.0	52.5 (42.5-78.0)	0.000	
Height (m)	1.69 (1.51-1.86)	1.67-1.72	1.67 (1.57-1.85)	1.65-1.70	0.645	1.55 (1.45-1.70)	1.55-1.56	1.56 (1.43-1.78)	1.55-1.57	1.56 (1.43-1.78)	0.222	
BMI (kg/m ²)	30.49 (25.12-38.98)	28.99-31.28	22.21 (18.68-24.61)	20.62-23.16	0.000	30.86 (25.08-56.00)	30.27-31.61	21.85 (18.47-24.97)	21.52-22.12	21.85 (18.47-24.97)	0.000	
Hb (g/dl)	14.9 (8.3-17.2)	14.6-15.3	15.2 (12.5-17.5)	14.5-15.4	0.801	13.1 (8.4-16.4)	12.9-13.3	13.0 (9.2-17.0)	12.7-13.2	13.0 (9.2-17.0)	0.051	
Hct (%)	45.3 (26.6-50.0)	44.0-46.0	45.9 (38.8-54.0)	43.9-46.0	0.751	39.5 (27.5-49.0)	39.0-40.0	39.0 (27.8-51.0)	38.0-40.0	39.0 (27.8-51.0)	0.250	
MCHC (%)	33.6 (30.9-35.3)	33.5-34.0	33.2 (31.7-34.6)	32.5-33.7	0.054	33.9 (23.8-35.9)	33.7-34.2	33.6 (31.5-36.4)	33.4-33.8	33.6 (31.5-36.4)	0.008	
Diastolic blood pressure	89.0 (60.0-120.0)	81.8-93.2	77.0 (54.0-104.0)	73.9-80.0	0.000	80.0 (57.0-130.0)	80.0-81.0	70.0 (48.0-109.0)	70.0-73.0	70.0-73.0	0.000	
Systolic blood pressure	130.0 (96.0-170.0)	130.0-137.3	119.5 (96.0-184.0)	113.0-126.0	0.000	125.0 (100.0-190.0)	120.0-130.0	110.0 (88.0-184.0)	110.0-112.0	110.0-112.0	0.000	
Vitamin B1 (αETK)	1.10 (0.65-1.36)	1.06-1.12	1.09 (0.71-1.77)	1.04-1.14	0.317	1.08 (0.64-2.39)	1.07-1.11	1.06 (0.66-1.84)	1.03-1.09	1.06 (0.66-1.84)	0.178	
Vitamin B2 (αEGR)	1.32 (0.91-2.26)	1.23-1.39	1.36 (0.91-1.65)	1.29-1.44	0.632	1.34 (0.94-2.15)	1.31-1.41	1.32 (0.96-2.02)	1.29-1.38	1.32 (0.96-2.02)	0.136	
Vitamin B6 (αEAST)	1.47 (1.03-2.59)	1.34-1.59	1.65 (1.01-2.24)	1.44-1.80	0.582	1.46 (0.80-2.59)	1.42-1.54	1.45 (1.01-3.40)	1.25-1.53	1.45 (1.01-3.40)	0.319	
Vitamin C (mg/l)	3.50 (0.00-28.00)	2.21-4.79	5.25 (0.00-13.00)	3.19-6.27	0.115	5.40 (0.00-28.00)	4.75-6.13	6.25 (0.00-23.00)	5.50-7.00	6.25 (0.00-23.00)	0.023	

BMI = body mass index
 αETK = erythrocyte transketolase activity coefficient, αEGR = erythrocyte glutathione reductase activity coefficient

αEAST = erythrocyte aspartate aminotransferase activity coefficient
 *Mann-Whitney U-Wilcoxon Rank Sum W test (Two-Tailed)

Table 3. Number and percentage of individuals with overweight, hypertension, anaemia and vitamin deficiencies compared with the controls.

Parameter	Male		Female		Total	
	Overweight		Overweight		Overweight	
	N/Total	%	N/Total	%	N/Total	%
Grading of overweight by BMI (kg/m ²)						
Grade I (BMI = 25.00-29.99)	28/61	45.9	-	-	88/209	42.1
Grade II (BMI = 30.00-39.99)	33/61	54.1	-	-	107/209	51.2
Grade III (BMI ≥ 40.00)	21/61	-	-	14/209	6.7	-
Hypertension						
Systolic ≥ 160 mmHg	6/61	9.8	1/38	2.6	9/209	4.3
Diastolic ≥ 95 mmHg	21/61	34.4	1/38	2.6	30/209	14.4
Anaemia						
Male, Hb < 13.0 g/dl	6/61	9.8	1/38	2.6	36/209	17.2
Female, Hb < 12.0 g/dl	6/61	9.8	1/38	2.6	33/209	15.8
Male, Hct < 40%	9/45	14.8	10/26	26.3	23/153	11.0
Female Hct < 36%					15/79	10.9
Both sexes, MCHC < 33%					39/270	14.4
Vitamin deficiencies					32/198	11.9
Vitamin B1 ≥ 1.25 (αETK)	3/61	4.9	7/38	18.4	11/137	8.0
Vitamin B2 ≥ 1.50 (αEGR)	12/61	19.7	9/38	23.7	30/137	21.9
Vitamin B6 ≥ 2.00 (αEAST)	4/57	6.6	3/37	8.1	9/209	4.3
Vitamin C < 5 mg/l	42/61	68.9	19/38	50.0	97/207	46.4

αETK = erythrocyte transketolase activity coefficient, αEGR = erythrocyte glutathione reductase activity coefficient, αEAST = erythrocyte aspartate aminotransferase activity coefficient

N/Total = number of present result / total number of subjects in each group

Table 4. Correlation coefficients of age, anthropometric variables, blood pressure, vitamin B and C in both overweight and obese males and females (BMI $\geq 25.0 \text{ kg/m}^2$).

Parameter	Hb	Hct	MCHC	Dias BP	Syst BP	Vit B ₁	Vit B ₂	Vit B ₆	Vit C
Age	-0.023	-0.034	0.115	0.165**	0.268**	-0.098	0.004	-0.066	-0.013
Weight	0.219**	0.240**	-0.219**	0.205**	0.200**	0.004	0.059	-0.021	-0.039
Height	0.331**	0.339**	-0.088	0.117	0.086	-0.026	-0.081	-0.013	-0.020
BMI	0.050	0.071	-0.234**	0.162**	0.177**	0.053	0.108	-0.014	0.000
Hb	1.000	0.971**	0.140*	0.140*	0.135*	0.006	-0.235**	0.073	-0.102
Hct		0.971**	1.000	0.018	0.165**	0.137*	-0.005	-0.233**	0.067
MCHC			0.140*	1.000	-0.144*	-0.108	0.104	-0.097	0.136
Dias BP				0.165**	-0.144*	1.000	0.743**	-0.008	0.017
Syst BP					0.135*	0.137*	-0.045	-0.018	-0.015
Vit B ₁						0.006	-0.005	1.000	0.138*
Vit B ₂						-0.235**	-0.233**	-0.036	-0.005
Vit B ₆							0.073	0.067	0.148*
Vit C							0.102	-0.095	1.000

Significant difference: *p<0.05, **p<0.01

The prevalence of anaemia in the male and female overweight and obese subjects was 9.8 per cent and 17.2 per cent, respectively using the cut-off point of haemoglobin concentration as an indicator of anaemia. The rates of anaemia in the overweight and obese subjects were at the same magnitude as those found in a group of Thai road sweepers (14.8% in males and 15.2 per cent in females)(22), and Thai labourers (11.3% in males and 24.5% in females)(23).

The median values of vitamin C concentration in both sexes of the overweight and obese subjects were found to be lower than those of the control subjects (Table 1). Serum vitamin C concentrations in the males were also found to be lower than the female overweight and obese subjects (Table 2). More than 50 per cent (139 out of 270) of all overweight and obese subjects had vitamin C levels below the normal cut-off point value of 5 mg/l. In a previous report by the authors, it was also found that the antioxidant enzyme superoxide dismutase, glutathione peroxidase and catalase, which are responsible for metabolising reactive oxygen species (ROS), were significantly lower than the normal groups(8). The low level of vitamin C concentration in overweight and obese subjects might result from high activity metabolism and might be related to decreased oxidative enzymes which require a reducing agent such as vitamin C to maintain the situation.

Although no statistically significantly differences in vitamin B₁, B₂, and B₆ were found when comparing the overweight and obese with normal subjects (Table 1), 26.7 per cent of the overweight and obese subjects were found to have riboflavin deficiency (Table 3). No clinical signs of this vitamin deficiency were observed. The high rate of vitamin B₂ deficiency in Thailand is well known, as confirmed by recent studies undertaken in the elderly (5), road sweepers(22), construction site workers(24), vegetarians(25), new-borns and their mothers from the northeast(26), children and their mothers in a well-baby clinic(12), and preschool children in the northeast of Thailand(14). Vitamin B₂ deficiency in the overweight and obese subjects might be related to insufficient dietary vitamin intake and increased use of this vitamin in protein, lipid metabolism as found in lower antioxidant enzymes(8). Therefore, further investigation concerning vitamin B₂ requirements and the actual intake of riboflavin are needed.

ACKNOWLEDGEMENTS

The authors wish to thank all the volunteers, Dr. Ariya Lertchavanakul, Outpatient General Practice Section, Rajvithi Hospital, and all the staff of the Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University for their cooperation in this research. This work was partly supported by funds from Mahidol University and Free University, Berlin, Germany.

REFERENCES

1. Kuezamrski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults: The National Health and Nutrition Examination Surveys, 1960-1991. *JAMA* 1994; 272: 205-11.
2. Flegal KM, Carroll MD, Kuczmarski RJ, et al. Overweight and obesity in the United States: Prevalence and trends, 1960-1994. *Int J Obes Relat Metab Disord* 1998; 22: 39-47.
3. Pongpaew P, Schelp FP. Elderly in a country going through epidemiological health transition: The example of Thailand. *Age & Nutrition* 1997; 8: 30-5.
4. Pongpaew P, Tungtrongchitr R, Supawan V, Phonrat B, Schelp FP. Lipid profile and blood pressure in relation to nutritional anthropometry of 117 Thai construction site workers. *Intern Med* 1994; 10: 34-9.
5. Pongpaew P, Tungtrongchitr R, Lertchanakul A, et al. Anthropometry, lipid and vitamin status of 215 health-conscious Thai elderly. *Int J Vit Nutr Res* 1991; 61: 215-23.
6. Kushner RF. Body weight and mortality. *Nutr Rev* 1993; 51: 127-36.
7. Lertchanakul A, Maleehuan O, Pongpaew P, Tungtrongchitr R, Vutikes S, Schelp FP. Lipid profiles and blood pressure in relation to body mass index (BMI) of overweight and obese Thai in Bangkok. *Intern Med* 1998; 14: 66-70.
8. Viroonudomphol D, Pongpaew P, Tungtrongchitr R, et al. Erythrocyte antioxidant enzyme and blood pressure in relation to overweight and obese Thai in Bangkok. *Southeast Asian J Trop Med Public Health* 2000; 31: 325-34.
9. Tungtrongchitr R, Pongpaew P, Phonrat B, et al. Serum leptin and lipid profiles in Thai obese and overweight subjects. *Int J Vit Nutr Res* 2001; 71: 74-81.
10. WHO Expert Committee. Physical status: The use and interpretation of anthropometry: Report of a WHO Expert Committee. Geneva: World Health Organization; WHO Tech Rep Ser 1995: 854.
11. International Committee for Standardisation in Haematology: Recommendations for reference method for haemoglobinometry in human blood. (ICSH standard EP 6/2:1977) and specifications for international haemoglobin cyanide reference preparation (ICSH Standard EP 6/3:1977). *J Clin Path* 1978; 31: 139-43.
12. Changbumrung S, Poshakrishana P, Vudhivai N, Hongtong K, Pongpaew P, Migasena P. Measurements of B_1 , B_2 , B_6 status in children and their mothers attending a well-baby clinic in Bangkok. *Int J Vit Nutr Res* 1984; 54: 149-59.
13. Power HJ, Thurnham DI. Physiological effects of marginal riboflavin deficiency in young adults and geriatrics: Reduction in the *in vivo* survival time of erythrocytes. *Proc Nutr Soc* 1980; 39: 17A.
14. Vudhivai N, Changbumrung S, Schelp FP, et al. Riboflavin status in preschool children in Northeast Thailand: A community survey. *J Med Assoc Thai* 1986; 69: 543-8.
15. Changbumrung S, Schelp FP, Hongtong K, Buavatana T, Supawan V. Pyridoxine status in preschool children in northeast Thailand: A community survey. *Am J Clin Nutr* 1985; 41: 770-5.
16. Liu TZ, Chin N, Kiser MD, Bigler WN. Specific spectrophotometry of ascorbic acid in serum or plasma by use of ascorbate oxidase. *Clin Chem* 1982; 28: 2225-8.
17. Ryan TA, Brian LB, Ryan BF. Minitab student handbook. 2nd ed. Boston: PWS-Kent, 1985.
18. Pongpaew P, Tungtrongchitr R, Phonrat B, et al. Activity, dietary intake and anthropometry of an informal social group of Thai elderly in Bangkok. *Arch Gerontol Geriatr* 2000; 30: 245-60.
19. Stamler RA, Stamler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure finding in hypertension screening of 1 million Americans. *JAMA* 1978; 240: 1607-10.
20. Reisen E, Abel R, Modan M, Silverberg DS, Eliahou HE, Modan B. Effect of weight loss without salt restriction on the reduction of blood pressure in overweight hypertensive patients. *N Engl J Med* 1978; 298: 1-6.
21. Rocchini AP, Key J, Blondie D, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. *N Engl J Med* 1989; 321: 580-5.
22. Vudhivai N, Pongpaew P, Tungtrongchitr R, Phonrat B, Horsawat V, Schelp FP. Riboflavin and nutritional status of Thai road sweepers in Bangkok. *Intern Med* 1997; 13: 77-80.
23. Yamwong P, Sonjai A, Rungpitarangsi V. Prevalence of anaemia in Thai labourers intending to work abroad. *Siriraj Hosp Gaz* 1991; 43: 1-5.
24. Pongpaew P, Tungtrongchitr R, Tawprasert S, et al. Vitamins, electrolytes and hematological status of urban construction site workers in Bangkok. *Asia Pacific J Clin Nutr* 1993; 2: 135-40.
25. Vudhivai N, Ali A, Pongpaew P, et al. Vitamin B_1 , B_2 , B_6 status of vegetarians. *J Med Assoc Thai* 1991; 74: 465-70.
26. Vudhivai N, Pongpaew P, Prayurahong B, et al. Vitamin B_1 , B_2 and B_6 in relation to anthropometry, haemoglobin and albumin of newborns and their mothers from Northeast Thailand. *Int J Vit Nutr Res* 1989; 60: 75-80.

ระดับวิตามินบี วิตามิน ซี และดัชนีชี้วัดทางโลหิตวิทยา ในกลุ่มคนไทยที่มีน้ำหนักเกิน และอ้วนในเขตกรุงเทพมหานคร

ตลับพร หาญรุ่งโรจน์, วท.บ., วท.ม., Dr.oec.troph.*, พรรัคเม จินตฤทธิ์, วท.บ., วท.ม.*,
นิยมศรี ฤทธิ์วัย, วท.บ., วท.ม.*., ปราณีต ผ่องแพร์, วท.บ., M.S., วท.ม.*,
รังสรรค์ ตั้งตรงจิตร, ปร.ด.*., เบญจลักษณ์ ผลรัตน์, วท.ม.**,
สุปรานี แจ้งบำรุง, วท.บ., วท.ม., Dr.agr.*., แฟรงค์ บีเตอร์ เซลฟ์, Dr.med., D.T.M.&H., D.Sc.***

การเปลี่ยนแปลงทางสังคมและเศรษฐกิจของประเทศไทยมีผลกระทบต่อชีวิตความเป็นอยู่ พฤติกรรมการบริโภคและภาวะโภชนาการของประชาชน ทำให้จำนวนของผู้ที่มีภาวะโภชนาการเกินและอ้วนเพิ่มขึ้นเป็นอย่างมากในปัจจุบันนี้ อย่างไรก็ตามการเฝ้าระวังและศึกษาภาวะโภชนาการเกินและอ้วนในปัจจุบันยังไม่มากนัก ขณะผู้วิจัยได้ทำการศึกษาภาวะวิตามินและดัชนีชี้วัดทางโลหิตวิทยาของผู้ที่มีภาวะโภชนาการเกินและอ้วนจำนวน 270 คนในกรุงเทพมหานครเปรียบเทียบกับกลุ่มที่มีภาวะโภชนาการปกติจำนวน 175 คน ไม่พบความแตกต่างของค่าชี้โนโกลบินและชีมาโตริระหงากลุ่มผู้มีภาวะโภชนาการเกินและอ้วนกับกลุ่มปกติ เมื่อใช้ระดับชี้โนโกลบินเป็นเกณฑ์ตัดลินภาวะโลหิตจาง พบภาวะโลหิตจางร้อยละ 9.8 และ 17.2 ในกลุ่มผู้มีภาวะโภชนาการเกินและอ้วนชายและหญิง ขณะที่พบภาวะโลหิตจางในกลุ่มที่มีภาวะโภชนาการปกติชายและหญิงร้อยละ 2.6 และ 21.2 ตามลำดับ นอกจากนี้ความดันโลหิตของกลุ่มผู้มีภาวะโภชนาการเกินและอ้วนมีระดับที่สูงกว่ากลุ่มปกติอย่างมีนัยสำคัญทางสถิติ เมื่อศึกษาถึงภาวะวิตามินคงผู้วิจัยพบว่าระดับค่าเฉลี่ย (มัธยฐานและพิสัยของค่า coefficient activity) ของวิตามิน บีหนึ่ง บีสอง บีหก ในกลุ่มผู้มีภาวะโภชนาการเกินและอ้วนไม่แตกต่างจากกลุ่มปกติ แต่ก็พบว่าในกลุ่มผู้มีภาวะโภชนาการเกินและอ้วน ชายและหญิงมีภาวะการขาดวิตามิน บีสอง ร้อยละ 19.7 และ 28.7 ตามลำดับโดยใช้ค่า glutathione reductase activity coefficient (α EGR) < 1.5 เป็นเกณฑ์ตัดลิน กลุ่มผู้มีภาวะโภชนาการเกินและอ้วนชายและหญิงมีภาวะขาดวิตามินซีซึ่งเป็นสารต้านอนุมูลอิสระร้อยละ 51.5 เมื่อเปรียบเทียบกับร้อยละ 41.7 ในกลุ่มคนปกติ จากผลการศึกษารังน้ออาจเป็นข้อเสนอแนะช่วยให้เกิดความสนใจที่จะทำการศึกษาวิจัยเกี่ยวกับสุขภาพและปัญหาโภชนาการในกลุ่มผู้มีภาวะโภชนาการเกินพิภัตและอ้วนเพิ่มมากขึ้น โดยเฉพาะอย่างยิ่งเกี่ยวกับภาวะของวิตามินต่าง ๆ และความเครียด

คำสำคัญ : วิตามินบีหนึ่ง บีสอง บีหก วิตามินซี, ภาวะโลหิตจาง, ภาวะโภชนาการเกินและอ้วน

ตลับพร หาญรุ่งโรจน์, พรรัคเม จินตฤทธิ์, นิยมศรี ฤทธิ์วัย, และคณะ
จดหมายเหตุทางแพทย์ ฯ 2545; 85: 17-25

* ภาควิชาโภชนาศาสตร์ฯศรีร้อนและวิทยาศาสตร์อาหาร,

** ภาควิชาอาชุรศาสตร์ฯศรีร้อน, คณะเวชศาสตร์ฯศรีร้อน, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10400

*** ภาควิชาระบบทวิภาคี, Institute of Social Medicine, มหาวิทยาลัยพรี, เบอร์ลิน, เยอรมัน