

Thyrotropin Screening for Congenital Hypothyroidism in Queen Sirikit National Institute of Child Health, Thailand (During year 1995-2000)

SUNCHAI CHURESIGAEW, M.D.*,
VILAI RATRISAWADI, M.D.**,
SOMCHIT THAERAMANOPHAB, B.Sc., M.S.***

Abstract

Objectives : To detect newborns with congenital hypothyroidism (CH) by TSH screening and to treat the affected infants as early as possible. To find the incidence of CH in neonates born at Rajavithi Hospital from 1995 to 2000. The effects of thyroid pathology, ages at the initiation of treatment, associated conditions, and severity of CH on the intellectual outcome of the patients were also analyzed.

Study designs : Thyrotropin (TSH) screening for CH in Queen Sirikit National Institute of Child Health was done in neonates born at Rajavithi Hospital from 1995 to 2000. Infants with elevated TSH level of greater than 25 mU/L were recalled for tests including serum T_4 , TSH and roentgenogram of bone age. Infants with CH were treated with levothyroxine 10-12 μ g/Kg/day : growth and development, serum T_4 , TSH were followed-up every 3 months for at least 2 years to keep serum T_4 between 10-14 μ g/dL and serum TSH below 6 mU/L. Levothyroxine was discontinued for 4 weeks when the infants were over 2 years old. Serum T_4 , TSH, thyroid scan, and uptake were then performed on these infants. The patients must be euthyroid at the time of the intelligence testing. The Stanford Binet or Vineland Social Maturity scale was used to evaluate the patient's intelligence between the ages of 2 and 5 years.

Results : From 1995 to 2000, 62,681 neonates were screened for CH. The incidence of CH was 1 : 4,178 live births. The sex ratio female : male 2 : 1. Fifteen infants with CH were started on levothyroxine 10-12 μ g/Kg/day orally once a day. The age of initiation of treatment was between 2-8 weeks. There were 4 patients with lingual thyroid, 4 patients with thyroid hypoplasia, 2 patients with thyroid aplasia and one patient with organification defect. The average intelligence score was 93.8. The factor that significantly affected the intellectual outcome of the patients was associated with adverse conditions such as prematurity with complications, epilepsy and family disruption ($p<0.05$).

Conclusion : The results indicate that congenital hypothyroidism is common in Thailand. Intellectual outcome in these patients with CH has been improved by neonatal screening and giving an initial high dose of levothyroxine treatment as early as possible.

Key word : Thyrotropin Screening, Congenital Hypothyroidism at Queen Sirikit National Institute of Child Health, Intelligence Quotient, Neonatal Diagnosis, Age

**CHURESIGAEW S,
RATRISAWASDI V, THAERAMANOPHAB S**
J Med Assoc Thai 2002; 85: 782-788

* Endocrine Unit,

** Neonatology Unit, Department of Pediatrics,

*** Psychology Unit, Department of Psychiatry, Queen Sirikit National Institute of Child Health, Bangkok 10400, Thailand.

Congenital hypothyroidism (CH) is one of the most common endocrine diseases of children. The incidence of CH worldwide is approximately 1 : 4,000 live births with a range of 1 : 2,000 to 1 : 7,000 live births(1-4). Recent reports from Southeast Asian countries showed the incidence of CH varied from 1 : 600 to 6,246 live births(5-10).

The clinical findings of CH in the early months of life are nonspecific e.g. constipation, lethargy, poor feeding and prolonged neonatal jaundice etc. However, delayed diagnosis and treatment of CH will cause irreversible mental deficiency and neurological deficit(11). Churesigaew S. reported that only 20.4 per cent of children with CH received treatment before 3 months of age(12). Kleine et al showed the average intelligence quotient (IQ) scores of infants treated before 3 months was 89, 3-6 months 70 and after 7 months the average IQ was only 54. Besides, these infants will have neurological deficit i.e. spasticity, hyperkinesis, short attention span, speech defect, ataxia and irreversible mental retardation from delayed diagnosis and treatment(13). Therefore, screening for CH in neonates is universally accepted as necessary and has also proved to be cost-benefit(6).

The purpose of this study was to evaluate the incidence of CH and the intellectual outcomes of those patients detected by neonatal screening at Queen Sirikit National Institute of Child Health in

Thailand. The relationships between intellectual outcome and pathology of the thyroid, ages at initiation of treatment and severity of hypothyroidism were also analyzed.

SUBJECTS AND METHOD

The TSH screening program was initiated at Queen Sirikit National Institute of Child Health in 1995. Initially screening was done on cord blood of neonates born at Rajavithi Hospital by the laboratory of Rajavithi Hospital. The TSH level was measured by using radioimmunoassay. From June 1996 TSH screening was done on dried blood by the laboratory of the Department of Medical Sciences, Ministry of Public Health. The blood specimens were taken from the infants at the age of 2-3 days. Radioimmunoassay was used to measure the TSH level. The cut-off level for patient recall was 25 mU/L. Serum T₄, TSH bone age X-rays were done on patients with an abnormal screening test. If the value of serum T₄, TSH was abnormal, the neonate was placed on levothyroxine 10-12 Ug/Kg/day orally once a day. Serum T₄, TSH were again repeated 2-4 weeks after initiation of treatment. If serum T₄ was between 10-14 Ug/dl and serum TSH was less than 6 mU/L, the same dosage of levothyroxine was continued. Serum T₄, TSH was checked every 3 months during the first 2 years of life, when the infants were 2-3 years old levothyroxine was dis-

continued for 4 weeks. Determination of serum T₄, serum TSH,¹³¹I uptake and technetium-99 m scan of the thyroid gland was then performed on these infants. If the test was normal, levothyroxine was discontinued. The Stanford Binet or Vineland Social Maturity Scale was used to evaluate the intelligence quotient (IQ) or the social quotient (SQ) scores in euthyroid patients between the ages of 2 and 5 years.

Statistical analysis of data related to intellectual outcome was performed using student's *t*-test and one-way analysis of variance (ANOVA) and Fisher Exact. A *p*-value of less than 0.05 was considered statistically significant.

RESULTS

From May 1995 to December 2000, 80,085 infants were born at Rajavithi Hospital and 62,681 neonates were screened for CH. The average coverage of thyroid screening was 78.27 per cent. The coverage increased significantly from 44.12 per cent in 1995 to greater than 94 per cent in the last 3 years as shown in Table 1. The incidence of CH in this series was 1 : 4,178 live births.

Infants with elevated TSH levels greater than 25 mU/L were recalled for confirmation of CH. The average recall rate was 0.47 per cent. The return rate for repeated test has increased progressively from 47.87 per cent in 1995 to 89.47 per cent in 2000 (Table 2).

Of 62,681 neonates screened for CH, 15 patients with CH were found (Table 3). There were 10 females and 5 males. The sex ratio F : M = 2 : 1. The etiology of CH detected by thyroid scan and uptake showed that 2 patients with athyreosis, 4 patients with lingual thyroid, 4 patients with thyroid hypoplasia and 1 patient with organification defect. Serum T₄ were between <0.23 to 13.79 μ g/dl. Serum TSH values were 6.98 to >100 mU/L. X-rays of bone age showed normal bone age in 9 patients, and delayed bone age in 6 patients. Ages at start of treatment were 2-4 weeks in 11 patients, over 4-8 weeks in 4 patients. Case number 1 had a history of disruptive family. The patient's parents planned to divorce. Case number 7 was a premature baby with many complications. Case number 11 had patent ductus arteriosus, congestive heart failure and epilepsy.

Table 1. Coverage of TSH screening from May 1998 - to December 2000.

Year	Total births	No. Screened	%
1995 (May-December)	12,155	5,363	44.12
1996	15,776	10,684	67.72
1997	14,309	9,875	64.10
1998	13,396	12,725	94.99
1999	12,191	11,981	98.28
2000	12,258	12,053	98.32
68 mo.	80,085	62,681	78.27

Table 2. Recall rate and return rate in infants with elevated serum TSH.

Year	No. Screened	TSH>25 mU/L	Recall rate (%)	Return rate for repeated test (%)
1995 (May-December)	5,363	94	1.75	47.87
1996	10,684	94	0.88	67.02
1997	9,875	15	0.15	100.00
1998	12,725	26	0.20	80.77
1999	11,981	34	0.28	94.12
2000	12,053	19	0.16	89.47
Total	62,681	293	0.47	-

Table 3. Laboratory findings in 15 patients with CH diagnosed by TSH screening, IQ, SQ and ages at start of treatment.

No.	Screening TSH mU/L	T ₄ Ug/dL	TSH mU/L	X-Ray bone age	Thyroid scan up take	Ages of start of treatment	IQ or SQ
1+	43.01	9.97	81.82	Normal	Ectopia	4	80
2	135.6	0.75	>100.0	Delayed	Organifi-cation defect	3	103
3	34.87	6.0	>50.0	Normal	Athyreosis	4	113
4	97.81	4.18	>100.0	Normal	Ectopia	4	94
5	>191.11	0.9	>100.0	Normal	Athyreosis	4	92
6	191.0	4.4	92.11	Normal	Ectopia	5	92
7+	26.01	13.79	13.19	Delayed	Hypoplasia	8	84
8	47.39	6.44	6.98	Delayed	Hypoplasia	4	104
9	47.4	11.4	32.3	Normal	Hypoplasia	4	91
10	>100.0	<1.0	>100.0	Delayed	Hypoplasia	8	99
11+	191.0	0.602	17.28	Normal	Ectopia	8	80
12	>171.0	<0.23	>100.0	Delayed	-	4	-
13	229.82	5.43	>100.0	Delayed	-	4	-
14	51.08	9.15	>35.1	Normal	-	2	-
15	>100.0	1.5	>100.0	Normal	-	3	-

+ SQ was used because IQ could not be tested

Table 4. IQ or SQ scores in 11 patients with CH in relation to initial serum T₄, X-ray bone age.

IQ or SQ	T ₄ Concentration		X-Ray bone age	
	<2 Ug/dL	>2 Ug/dL	Delayed	Normal
>90 +	3	5	2	6
80-89 ++	1	2	1	2
Fisher Exact p = 0.72			Fisher Exact p = 0.66	

+ IQ>90 = normal

++ IQ Dull average or dull normal

He received treatment rather late at 8 weeks of age. Case number 12 was lost to follow-up. Case number 13 has Down's syndrome. She was 13 months old at the time of study.

There were only 3 patients with dull normal intelligence excluding 1 patient with Down's syndrome who has not had an IQ test yet. The average intelligence score of this series was 93.8 which is normal.

Table 4 shows IQ or SQ scores in 11 patients with CH in relation to initial serum T₄ <2 Ug/dL or >2 Ug/dL, delayed or normal bone age. There was no significant difference between the patients with IQ >90 and IQ 89-80, normal or delayed X-ray bone age.

Table 5 shows IQ or SQ scores in patients with mild CH (ectopia, thyroid hypoplasia), severe

CH (athyreosis, dyshormonogenesis)(14) and also in relation to associated adverse conditions, ages at start of treatment (<4 weeks, 4-8 weeks).

Only patients with adverse conditions had IQs between 80-89 (p>0.05).

DISCUSSION

The incidence of CH in this study was 1 : 4,178 live births. The sex ratio female : male was 2 : 1. Ectopic thyroid gland, and thyroid hypoplasia were the most common cause of CH. This finding is similar to other studies(4-10). In previous studies, pathology and mental outlook varied among patients with various types of CH not detected by neonatal screening i.e. patients with ectopic glands had the best prognosis, and athyreosis was the worst (11,13-15). Hsiao HP et al's report showed patients

Table 5. IQ or SQ scores in patients with mild CH (ectopia, hypoplasia) severe (athyreosis, dyshormonogenesis) with and without adverse conditions, ages at start of treatment.

IQ or SQ	mild CH	severe CH	Adverse * conditions	No adverse conditions	Age at start of treatment	
					<4 wks	4-8 wks
>90	5	3	0	8	6	2
80-89	3	-	3	0	1	2
Anova p = 0.12			Anova p = 0.01			Anova p = 0.59

* p<0.05

with initial serum $T_4 < 2$ μ g/dL at the time of diagnosis had lower IQs than those with initial serum $T_4 > 2$ μ g/dL ($p < 0.05$). Patients with delayed bone age at birth had lower IQs than those with normal bone age ($p < 0.05$) (14). The findings from the present study did not agree with Hsiao HP *et al*'s findings (14). Only the adverse associated conditions of the patients had significantly effect in lowering IQs than the patients without adverse conditions ($p < 0.05$). The present study also suggests that early treatment reduced the difference in IQs among the various confounding factors. Bongers JJ *et al*'s data suggested using higher dosage of levothyroxine (above 9.5 μ g/Kg/d) than previously used in the newborns 2 weeks after birth resulted in normal IQs of patients

with CH, irrespective of the severity of the disease (15). The patients in the present study were placed on levothyroxine 10-12 μ g/Kg/d and had regular serum T_4 , TSH and followed-up every 3 months until 2-3 years of age. That may be why most of the patients had normal IQs. One patient with athyreosis even had an IQ of 113 which is considered bright normal.

In conclusion, the present study has shown that the intellectual outcome in patients with CH has been improved by neonatal screening and only associated adverse conditions are the most important prognostic factors affecting the intellectual outcome of the patient.

(Received for publication on December 26, 2001)

REFERENCES

1. Fisher DA, Dussault JH, Foley TP, et al. Screening for congenital hypothyroidism : Results of screening one million North American infants. *J Pediatr* 1979; 94: 700-5.
2. La Franchi SH, Murphy WH, Foley TP, Larsen PR, Buist NRM. Neonatal hypothyroidism detected by the northwest regional screening program. *Pediatrics* 1979; 63: 180-91.
3. Newborn committee of the European Thyroid Association. Neonatal screening for congenital hypothyroidism in Europe. *Acta Endocrinol* 1979; (Suppl 223): 4-29.
4. Delange F, Fisher DA. The thyroid gland. In : Brook C, ed. Clinical pediatric endocrinology 3rd ed. Oxford: Blackwell, 1995: 397-433.
5. Sukthomya V, Sinlaparatsamee S, Denyookta D, Kunsakawin S. Neonatal screening for hypothyroidism in Southern Thailand. Proceedings of an International Symposium Nuclear Techniques in Developing Countries. Vienna: International Atomic Energy Agency, 1986: 367-73.
6. Rajatanavin R, Chailikit L, Sriprapadaeng A, et al. Screening for congenital hypothyroidism in Thailand : Has its time come ? *J Med Assoc Thai* 1993; 76 (Suppl 2): 2-8.
7. Thaithumyanon P, Srivuthana S, Poshyachinda M. Neonatal screening for hypothyroidism at a University Hospital in Thailand. Presented is the 3rd Asia-Pacific Regional Meeting of the international Society for Neonatal Screening. November 15-18, 1998.
8. Ratrisawadi V, Horpaopan S, Chotigeat U, et al. Neonatal screening program in Rajavithi Hospital, Thailand. *Southeast Asian J Trop Med Public Health* 1999; 30 (Suppl 2): 28-32.
9. Wasant P, Liammongkolkul S, Srisawat C. Neonatal screening for congenital hypothyroidism and phenylketonuria at Siriraj Hospital Mahidol University, Bangkok, Thailand - A pilot study *Southeast Asian J Trop Med Public Health* 1999; 30 (Suppl 2): 33-7.
10. Mahachoklertwatana P, Phnapradit W, Siripoonya P, et al. Five-year thyrotropin screening for congenital hypothyroidism in Ramathibodi Hospital. *J Med Assoc Thai* 1999; 82 (Suppl 1): S27-S32.
11. Maenpaa J. Congenital hypothyroidism : Etiological and clinical aspects. *Arch Dis Child* 1972; 47: 914-22.
12. Churesigaew S. Clinical study of congenital hypothyroidism *J Med Assoc Thai* 1982; 65: 409-12.
13. Klein RZ. History of congenital hypothyroidism. In : Burrow GN, Dussault JH, eds. *Neonatal thyroid screening*. New York: Raven Press, 1980: 51-9.
14. Hsiao PH, Chiu YN, Tsai WY, et al. Intellectual outcome of patients with congenital hypothyroidism detected by neonatal screening. *J Formos Med Assoc* 2001; 100: 40-4.
15. Jacoba J, Bongers-Schokking, Hans M. Koot, Diet Wiersma, et al. Influence of timing and dose of thyroid hormone replacement on development in infants with congenital hypothyroidism. *J Pediatric* 2000; 136: 292-7.

การตรวจคัดกรองภาวะพร่องช่องมัมมารอยด์แต่กำเนิดที่สถาบันสุขภาพเด็กแห่งชาติ มหาราชินี พ.ศ. 2538-2543

ສັນນູ້ຂໍ້ມູນ ເຊື້ອສີ່ແກ້ວ, ພ.ບ.*,
ວິໄລ ຮາຕົວສົວສັດ, ພ.ບ.**, ສມຈິດຕົວ ທີ່ຮົມນົມກາພ, ວ.ທ.ບ. ສ.ຄ.ບ.***

วัตถุประสงค์ : เพื่อให้การวินิจฉัยภาวะพร่องชัยรอยด์ของรโนนแต่กำเนิด และให้การรักษาโรค ดังนั้นแล้วการรักษาโรค โดยที่ทางยังไม่แสดงอาการ ทำให้ทราบอุบัติการณ์ของโรค นอกจากนี้ยังหาสาเหตุปัจจัยที่ทำให้ผู้ป่วยที่ขาดชัยรอยด์ของรโนนแต่กำเนิดมีร่วงสัดสินปอนด์ภายใต้ด้าน

วิธีการศึกษา : เก็บเลือดเพื่อตรวจระดับฮอร์โมนตัวเรือน (TSH) โดยร่วมโครงการ ตั้งแต่เดือนพฤษภาคม 2538 ถึง ธันวาคม 2543 ทางการแรกเกิด จำนวน 62,681 คน ได้รับการตรวจ TSH ทางทั้งมี TSH มากกว่า 25 mU/L จะถูกติดตามมาตราฐาน (T₄) และ TSH ทางทั้งมีความผิดปกติจะได้รับยา Levothyroxine 10-12 Ug/kg/วัน ตรวจ T₄ TSH, การเจริญเติบโตของผู้ป่วยตลอดทั้งพัฒนาการ, ทุก 3 เดือน โดยปรับยาให้ T₄ อยู่ระหว่าง 10-14 Ug/dl และ TSH น้อยกว่า 6 mU/L เมื่อการอายุ 2-3 ปี หยุดยา Levothyroxine 4 สัปดาห์ แล้วตรวจ T₄ TSH, thyroid scan และ uptake ตรวจระดับสตีบัญญาเด็ก เมื่อผู้ป่วยหายดีแล้ว ศึกษาปัจจัยที่อาจมีผลต่อระดับสตีบัญญา ของเด็ก คือ อายุที่เริ่มให้การรักษา, ระดับ T₄, เกณฑ์อายุกระดูก, สาเหตุของภาวะพัร่องอัลตราซาวด์ฮอร์โมน, ภาวะแทรกซ้อนดัง ๆ โดยใช้ ANOVA และ Fisher Exact test.

ผลการศึกษา : พนักงาน 15 ราย มีภาวะพร่องรอยด์ของรูปโนนแต่กำนานี้ด คิดเป็นอัตราการณ์ 1 : 4,178 ของการเกิดเมชิพ เพศหญิง : เพศชาย 2 : 1 อายุที่เริ่มรักษา 2-8 สัปดาห์ พบรอยด์อยู่ผิดที่ที่โคนลิ้น 4 ราย, ต่อมรั้ยรอยด์ฝ่อ 4 ราย, ไม่มีต่อมรั้ยรอยด์ 2 ราย, ต่อมรั้ยรอยด์สร้างขึ้นของรูปโนนไม่ได้ (organification defect) 1 ราย ระดับผลบัญญาเฉลี่ยของผู้ป่วย 93.8 ปัจจัยที่มีผลต่อระดับผลบัญญาคือภาวะผิดปกติของผู้ป่วย เช่น คลอดก่อนกำหนดและโรคแทรกซ้อน, ลมบ้าหูม ปัญหาขาดความอ่อนการเลี้ยงดูในครอบครัว

สรุป : ภาวะพวยองอี้ร้อยด้วยริโนนแต่กำเนิดที่สถาบันสุขภาพเด็กแห่งชาติมหาราชินี ระหว่างปี 2538-2543 พบ 1 : 4,178 การตรวจคัดกรองภาวะนี้ในเด็กแรกเกิดและให้การรักษาด้วยยา levothyroxine ขนาด 10-12 ไมโครกรัม/กิโลกรัม/วัน ภายใน 4 สัปดาห์ หรืออย่างท้าไม่เกิน 8 สัปดาห์ จะป้องกันภาวะปัลปณสื่อ่อื่นในเด็กที่เป็นโรคคืดได้

คำสำคัญ : ภาวะพร่องด้วยรอยต่อของโน้มแต่กำเนิด, การตรวจคัดกรองที่สถาบันสุขภาพเด็กแห่งชาติมหาราชินี ในเด็กแรกเกิด, ปัจจัยที่มีผลต่อระดับสติปัญญา

ສັງຫັນ ເຊື້ອສິ້ຫຼາກ້ວ, ວິໄລ ກາຕວິສັວສົດ, ສມຈິຕ ຮຶ່ວມໂນກພ
ຊາດມາຍເທດການພະບາຍ ฯ 2545; 85: 782-788

* หน่วยความไว้ทุก

๒๙ หน่วยทักษะและภารกิจ ภลังกานุกรรมศาสตร์

*** หน่วยจิตวิทยา กลุ่มงานจิตเวช สถาบันสุขภาพเด็กแห่งชาติมหาราชินี กรุงเทพฯ 10400