

Epidemiology of Spinal Cord Injuries : A Study in the Spinal Unit, Siriraj Hospital, Thailand, 1997-2000

VILAI KUPTNIRATSAIKUL, MD*

Abstract

A prospective study of 83 patients with spinal cord injuries admitted to the Spinal Unit, Siriraj Hospital, Bangkok, Thailand from January 1997 to December 2000 was conducted. The average age was 33.2 ± 11.7 years (range from 10 to 68 years) with a male : female ratio of 4 : 1. Most subjects (83.2%) were aged between 16-45 years. About half of them had no associated injuries and no financial problems. Three-fourths of the spinal injuries were caused by traffic accidents (49.4 and 25.3% car and motorcycle respectively). The other two causes were falls (16.9%) and gunshot wounds (8.4%). The neurological classification was as follows: 34 (41.0%) patients had ASIA D grade of injury, 28 (33.7%) were paraplegic with ASIA A, B or C grade and 21 (25.3%) were tetraplegic with ASIA A, B, or C grade. Traffic accidents most frequently resulted in an incomplete ASIA D grade (40.3%). Males were more predominant for all causes of injury especially motorcycle accidents. The average Barthel Index score was 24.3 ± 24.7 and 51.9 ± 31.8 at admission and discharge respectively. The prevalence of depression was 24.1 per cent. The average length of stay for the depressed and non-depressed groups was 117.4 ± 59.1 and 73.4 ± 54.4 days respectively.

Key word : Spinal Cord Injury, Thailand, Depression, Length of Stay, Barthel Index Score

KUPTNIRATSAIKUL V
J Med Assoc Thai 2003; 86: 1116-1121

Traumatic spinal cord injury (SCI) is a devastating medical condition that disrupts the lives of the injured and their families⁽¹⁾. It constitutes a major area of disability in every country and results in profound and long-term disability or death⁽²⁾.

The incidence of SCI is increasing especially in developing countries. It is one of the most catastrophic lesions, often leading to permanent paralysis. It affects victims who are usually young and at the most productive stage of life. This causes a burden of

* Department of Rehabilitation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

suffering not only to the patient but to their families, community and the health care system. Devivo studied the total direct costs for all causes of SCI in the United States and found it to be 7.736 billion US dollars⁽³⁾.

Because the incidence of SCI is highest among young and productive patients, reducing the incidence of SCI will not only prevent social and family disruption but will substantially reduce direct health care costs and the social cost from lost productivity⁽¹⁾.

It is difficult to restore lost spinal cord function following SCI, so prevention is better than treatment⁽⁴⁾. Knowledge gained from an epidemiological study may lead to the development of intervention strategies capable of preventing permanent disability.

The objective of this study was to determine the demographics, neurological presentation, functional outcome and prevalence of depression of individuals with traumatic SCI admitted to the Spinal Unit, Siriraj Hospital, Bangkok.

MATERIAL AND METHOD

All patients with traumatic SCI who were admitted for the first time to the Siriraj Spinal Unit (SSU), Bangkok, from January 1997 to December 2000, were included in this study. Demographic data, details as to the cause of the accident, financial support and associated injuries were collected. The neurological level was classified according to the American Spinal Injury Association⁽⁵⁾. The complications during hospitalization and length of hospital stay were also recorded. The subjects were interviewed concerning functional abilities using the Barthel Index Score of

self care activities⁽⁶⁾ and evaluated for depression by a psychiatrist according to the Diagnostic and Statistical Manual of Mental Disorder, fourth edition (DSM-IV)⁽⁷⁾.

Statistical analysis

Descriptive analysis was used for the demographic data. Chi-square test was used to compare categorical data. For quantitative data, *t*-test was analyzed for parametric and Mann-Whitney for non-parametric data. The *p*-value was significant at a level of < 0.05 .

RESULTS

Eighty-three subjects; 66 males and 17 females, aged from 10 to 68 years (average = 33.2 ± 11.7). The age group 16-45 years accounted for the largest number of subjects with SCI (83.2%) (Fig. 1). Half of them were married. Seventy per cent of the SCI patients were working and 45.8 per cent had graduated from university. Forty-seven per cent had no financial problems, they were government officers or had health insurance. With regard to the associated injuries, 55.4 per cent had no head injury or injuries to the extremities, chest or abdomen. Three-fourths (75.9%) had no complications during their hospital stay (Table 1).

Table 2 shows the distribution of etiology and neurological classification. Three-fourths of the injuries were caused by traffic accidents (49.4 and 25.3% car and motorcycle accidents respectively). The other two causes were falls (16.9%) and gun shot wounds (8.4%). With regard to neurological classifi-

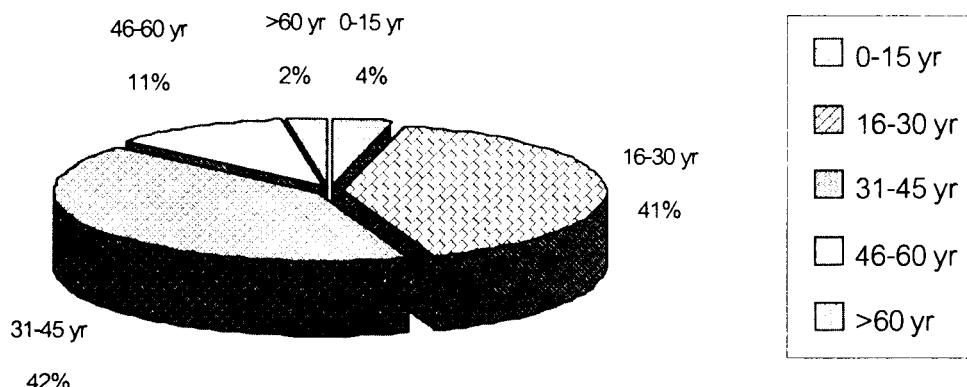


Fig. 1. Age at injury.

Table 1. The demographic data of SCI subjects.

	No.	%
Age (yr)	33.2 ± 11.7	
Sex		
Male	66	79.5
Female	17	20.5
Marital status		
Married	43	47.6
Not-married	39	52.4
Education level		
Primary school	22	26.5
Secondary school	23	27.7
University	38	45.8
Occupation		
Employed	58	69.9
Unemployed	25	30.1
Financial problems		
Yes	44	53.0
No	39	47.0
Associated injuries		
Yes	37	44.6
No	46	55.4
Complications during hospitalization		
Yes	20	24.1
No	63	75.9

cation, most subjects (41.0%) were ASIA D and the rest were paraplegic ASIA A, B, C and tetraplegic with ASIA A, B, C (33.7 and 25.3%). Traffic accidents most frequently resulted in incomplete ASIA D, followed closely by tetraplegic and paraplegic ASIA A, B or C. Eighty-five point seven per cent of falls resulted in paraplegic ASIA A, B or C and incomplete ASIA D.

The etiology categorized by gender is shown in Table 3. Not surprisingly, males were more predominant for all causes, especially motorcycle acci-

dents. The average Barthel Index score was 24.3 ± 24.7 and 51.9 ± 31.8 on admission and discharge respectively. There was statistical significance between the scores on admission and discharge for all neurological levels (Fig. 2). The average length of stay was 83.6 ± 58.2 days. Twenty patients (24.1%) were diagnosed as having depression according to DSM-IV criteria. The average lengths of stay for the depressed and non-depressed groups was 117.4 ± 59.1 and 73.4 ± 54.4 days respectively which were statistically significant.

DISCUSSION

A multidisciplinary approach is the important concept of comprehensive treatment of patients with spinal cord injury. It is essential for successful rehabilitation and reintegration of the patient into society. Rehabilitation should not only be separated from the initial treatment of SCI patients, but also integrated with treatment from the start. The Siriraj Spinal unit is a 15-bed inpatient ward of the Department of Orthopedic Surgery that has a multidisciplinary team approach. Staff from the Rehabilitation Department (Physiatrists, Physical therapists, Occupational therapists, Rehabilitation Psychologists and Social workers) work together from the beginning. Patients who are transferred to this unit come from different hospitals throughout the country.

The total number of the patients in the present study was small because there are only 15 beds in this ward. Some could not be discharged due to different facilities of care and the social support system in Thailand. They were put on a Bennett respirator. The hospitals they were going to be admitted to in rural areas had no Bennett and no visiting nurses, physical therapists or home health aids as in other developed countries.

Table 2. Etiology and neurological classification^a.

Etiology	Tetraplegic ASIA A, B, C	%	Paraplegic ASIA A, B, C	%	ASIA D	%	Total no	%
Traffic accident								
Car	16		10		15		41	49.4
Motorcycle	3		8		10		21	25.3
Fall	2		6		6		14	16.9
Gun shot wound	-		4		3		7	8.4
Total (p = 0.11)	21	25.3	28	33.7	34	41.0		

^a ASIA classification as follows: A = complete motor and sensory injury, B = incomplete preserved sensation only, C = incomplete preserved motor (nonfunctional), D = incomplete (preserved motor function below level of injury)(6).

Table 3. Etiology and gender.

Etiology	Gender			
	Male	%	Female	%
Traffic accident				
Car	31		10	
Motorcycle	19		2	
Fall	11		3	
Gun shot wound	5		2	
Total (p = 0.684)	66	79.52	17	20.48

With regard to the sex ratio, most of the study group (79.5%) were male; the male to female ratio was 4 : 1 which is lower than in previously reported results (8,9). This ratio is similar to that reported in the literature from Fiji(2), Taiwan(10) and South Africa(11). A study from Portugal(12) reported of male predominance with the ratio of 3.4 : 1. The proportion of males

has decreased significantly in recent years due to changes in the life-style of Thai people. Most modern women get involved in societal activity.

The age of the study sample ranged from 10 to 68 years with a mean of 33.2 ± 11.7 years. In the study from Fiji(2), the ages ranged from 6 to 76 years with a mean of 38.3 ± 17.3 years, whereas in Japan(4), the age ranged from 6 to 96 years with a mean of 48.3 ± 19.5 years. The life expectancy in each country influences the overall age range. In addition, the age group 16 to 45 years accounted for the largest group in the present study (83%). The minority of injuries occurred before the teenage years or after the age of 60. From a report by Nobunaga et al(13), the overall mean age was 32.3 years and 77.4 per cent of the injuries occurred between the ages of 16 to 45 years. In addition, in the Fiji study(2), the age group 16-45 years comprised the largest group (59.3%). Thus, this age group seems to be at the highest risk, so prevention campaigns should be directed at this age group.

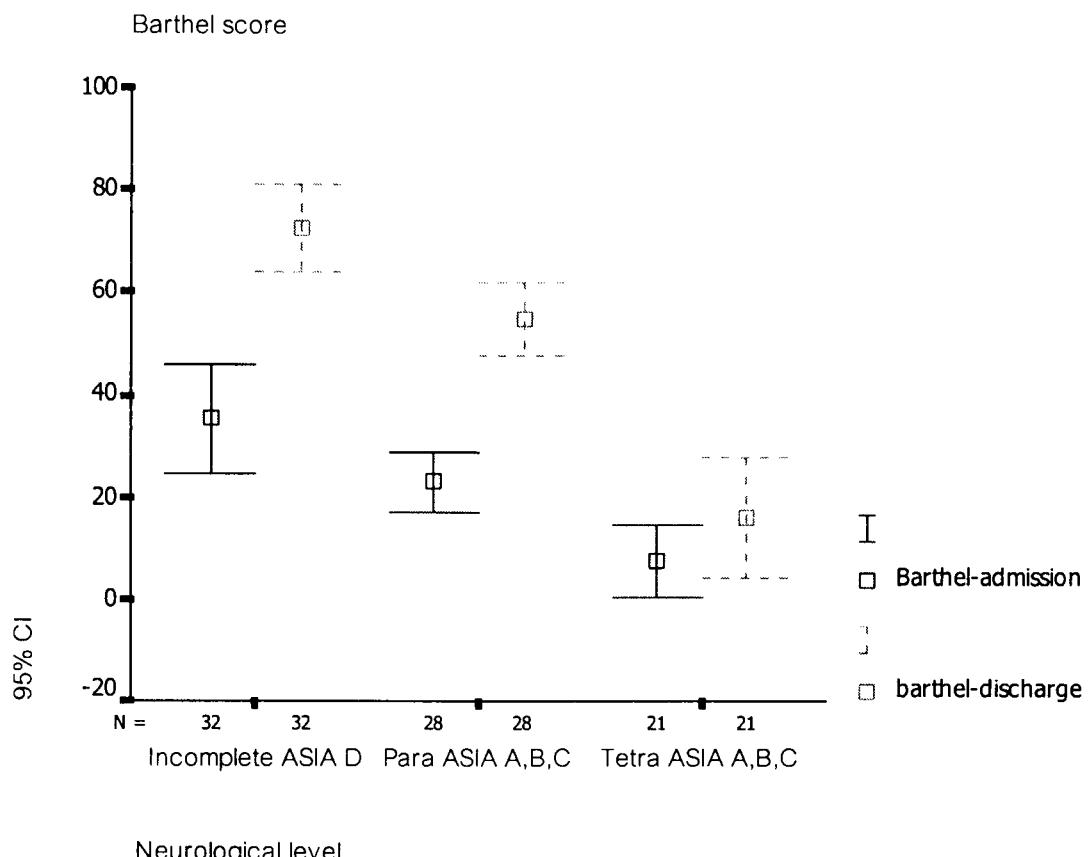


Fig. 2. Neurological classification and Barthel Index Score compared at admission and discharge.

The main cause of injury in the present study was from a traffic accident (74.7%) with a fall as the next greatest cause (16.9%). Studies from Japan (4) (traffic accidents 44.6%, falls 29.2%) Brazil(14) (traffic accidents 41.7%, falls 14.8%), Taiwan(10) (traffic accidents 61.6%, falls 23.3%) and Utah, USA (15) (motor vehicle crashes 49.3%, falls 21.1%) showed motor vehicle accidents as the leading cause of traumatic SCI followed by falls. The present study had no causes from violence, sport or assault. In the study of Kovindha(8) performed in Chiang Mai, a rural area in the northern part of Thailand, falls from a height were the most common cause (43%) followed by traffic accidents. The reason could be due to differences in occupation and lifestyle between rural and urban areas. Strategies to prevent SCI should be emphasized on car and motorcycle drivers to build up responsibility to prevent accidents such as no alcohol, and not using a mobile phone while driving.

The average Barthel Index score for self-care activities increased in the discharge period especially in ASIA D with a score above 60 (level of independent

ability). The reason was due to severity of neurological damage; complete tetraplegic patients had limited ability to recovery.

In addition, the authors also found the prevalence of depression among SCI subjects to be 24.1 per cent which was similar to that reported in previous studies (range from 20%(16) to over 30%(17,18)). In addition, the length of stay for depressed subjects was longer than for the non-depressed group (117 compared to 73 days). Depression in SCI patients has been associated with prolonged hospitalization, impaired social functioning and an increased incidence of medical complications after acquired physical disability (19,20). Therefore, early detection and treatment of depression should be carried out to prevent these poor outcomes.

ACKNOWLEDGEMENT

The authors wish to thank Miss Darunee Phungbumrong for typing the manuscript and Mr. Suthipol Udompunturak for statistical consultation and analysis.

(Received for publication on April 21, 2003)

REFERENCES

1. Acton PA, Farley T, Freni LW, Ilegbodu VA, Sniezek JE, Wohlleb JC. Traumatic spinal cord injury in Arkansas, 1980 to 1989. *Arch Phys Med Rehabil* 1993; 74: 1035-40.
2. Maharaj JC. Epidemiology of spinal cord paralysis in Fiji: 1985-1994. *Spinal Cord* 1996; 34: 549-59.
3. Devivo MJ. Causes and costs : of spinal cord injury in the United States. *Spinal Cord* 1997; 35: 809-13.
4. Shingu H, Itaka T, Katoh S, Akatsu T. Spinal cord injuries in Japan : A nationwide epidemiological survey in 1990. *Paraplegia* 1994; 32: 3-8.
5. Maynard FM Jr, Bracken MB, Creasey G, et al. International Standards for Neurological and Functional Classification of Spinal Cord Injury. *Spinal Cord* 1997; 35: 266-74.
6. Mahoney FI, Barthel DW. Functional evaluation : The Barthel Index. *Md Med J* 1965; 14: 61-5.
7. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.
8. Kovindha A. Spinal cord injuries in Maharaj Nakorn Chiang Mai Hospital : 5 years retrospectively. Chiang Mai, Thailand: Chiang Mai University; 2000. (Unpublished Thesis).
9. Mai Med Bull 1985; 24: 179-85.
10. Pajareya K. Traumatic spinal cord injuries in Thailand : An epidemiologic study in Siriraj Hospital, 1989-1994. *Spinal Cord* 1996; 34: 608-10.
11. Lan C, Lai JS, Chang KH, Jean YC, Lien IN. Traumatic spinal cord injury in rural region of Taiwan : An epidemiological study in Hualien country 1986-1990. *Paraplegia* 1993; 31: 398-403.
12. Hart C, Williams E. Epidemiology of spinal cord injuries: A reflection of changes in South African society. *Paraplegia* 1994; 32: 709-14.
13. Martins F, Freitas F, Martins L, Dartigues JF, Barat M. Spinal cord injuries-Epidemiology in Portugal's central region. *Spinal Cord* 1998; 36: 574-8.
14. Nobunaga AI, Go BK, Karunas RB. Recent demographic and injury trends in people served by the Model Spinal Cord Injury Care Systems. *Arch Phys Med Rehabil* 1999; 80: 1372-82.
15. da Paz AC, Beraldo PS, Almeida MC, Neves EG, Alves CM, Khan P. Traumatic injury to the spinal cord. Prevalence in Brazilian hospitals. *Paraplegia* 1992; 30: 636-40.
16. Thurman DJ, Burnett CL, Jeppson L, Beaudoin DE, et al. Prevalence of depression in spinal cord injury. *Spinal Cord* 1999; 37: 101-5.
17. Hwang J, Kim J, Kim J, et al. Prevalence of depression in spinal cord injury patients. *Spinal Cord* 2000; 38: 101-5.
18. Hwang J, Kim J, Kim J, et al. Prevalence of depression in spinal cord injury patients. *Spinal Cord* 2000; 38: 101-5.
19. Hwang J, Kim J, Kim J, et al. Prevalence of depression in spinal cord injury patients. *Spinal Cord* 2000; 38: 101-5.
20. Hwang J, Kim J, Kim J, et al. Prevalence of depression in spinal cord injury patients. *Spinal Cord* 2000; 38: 101-5.

Snizek JE. Surveillance of spinal cord injuries in Utah, USA. *Paraplegia* 1994; 32: 665-9.

16. Judd FK, Stone J, Webber JE, Brown DJ, Burrows GD. Depression following spinal cord injury: A prospective in-patient study. *Brit J Psychiatr* 1989; 154: 668-71.

17. Frank RG, Kashani JH, Wonderlich SA, Lising A, Visot LR. Depression and adrenal function in spinal cord injury. *Am J Psychiatry* 1985; 142: 252-3.

18. Fuhrer MJ, Rintala DH, Hart KA, Clearman R, Young ME. Depressive symptomatology in persons with spinal cord injury who reside in the community. *Arch Phys Med Rehabil* 1993; 74: 255-60.

19. Malec J, Neimeyer R. Psychological prediction of duration of inpatient spinal cord injury rehabilitation and performance of self-care. *Arch Phys Med Rehabil* 1983; 64: 359-63.

20. Tate DG, Maynard F, Forchheimer M. Predictors of psychologic distress one year after spinal cord injury. *Arch J Phys Med Rehabil* 1993; 72: 272-5.

ระบาดวิทยาในผู้ป่วยบาดเจ็บไขสันหลัง : การศึกษา ณ ศูนย์อุบัติเหตุผู้บาดเจ็บทางกระดูกสันหลัง โรงพยาบาลศิริราช ประเทศไทย : 2540-2543

วี. ไล คุปต์นิรตติศัยกุล, พบ*

ศึกษาผู้ป่วยบาดเจ็บไขสันหลัง ณ ศูนย์อุบัติเหตุผู้บาดเจ็บทางกระดูกสันหลัง โรงพยาบาลศิริราช ตั้งแต่ปี พ.ศ. 2540-2543 จำนวน 83 ราย เป็นชาย 66 และหญิง 17 ราย (สัดส่วนชาย : หญิง = 4 : 1) อายุ 33.2 ± 11.7 ปี (พิสัย 10-68 ปี) ล้วนใหญ่ (ร้อยละ 83.2) ได้รับบาดเจ็บในช่วงอายุ 16-45 ปี ประมาณครึ่งหนึ่งของกลุ่มตัวอย่างไม่มีปัญหาเคราะห์ซูกิและไม่พบบาดเจ็บร่วมของอวัยวะระบบอื่น สาเหตุของการบาดเจ็บพบว่าป่วยสามในสี่เกิดจากอุบัติเหตุจราจร (รถชนด้วยรถจักรยานยนต์ ร้อยละ 49.4 และ 25.3 ตามลำดับ) สาเหตุอื่นๆ ได้แก่ตกจากที่สูง (ร้อยละ 16.9) และถูกยิง (ร้อยละ 8.4) ระดับที่ได้รับบาดเจ็บผู้ป่วย 34 ราย (ร้อยละ 41) เป็นชนิด ASIA D ผู้ป่วย 28 ราย (ร้อยละ 33.7) เป็นอัมพาตครึ่งท่อนล่างชนิด ASIA A, B หรือ C และ 21 ราย (ร้อยละ 25.3) เป็นอัมพาตทั้งตัวชนิด ASIA A, B หรือ C อุบัติเหตุจราจรทำให้เกิดการบาดเจ็บชนิด ASIA D เป็นล้วนใหญ่ เพศชายพบได้บ่อยกว่าเพศหญิงอย่างเด่นชัดในทุกสาเหตุของโรค โดยเฉพาะอุบัติเหตุจากการชนกัน โดยเฉพาะในผู้ป่วยที่มีภาวะชีมเคร้าในผู้ป่วยบาดเจ็บไขสันหลัง เท่ากับร้อยละ 24.1 และระยะเวลาอ่อนโรงพยาบาลเฉลี่ยในกลุ่มผู้ป่วยที่มีภาวะชีมเคร้าร่วมด้วย และกลุ่มที่ไม่มีภาวะชีมเคร้า มีค่าเท่ากับ 117.4 \pm 59.1 วันและ 73.4 \pm 54.4 วันตามลำดับ

คำสำคัญ : บาดเจ็บไขสันหลัง, ประเทศไทย, ภาวะชีมเคร้า, ระยะนอนโรงพยาบาล, คะแนนบาร์เทล

วี. ไล คุปต์นิรตติศัยกุล

จุฬาลงกรณ์มหาวิทยาลัย ชั้นแพทย์ บ. 2546; 86: 1116-1121

* ภาควิชาเวชศาสตร์พื้นที่, คณะแพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10700