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Sudden cardiac death is a major health problem in most industrialized countries around the world
including Thailand. It is mainly caused by ventricular fibrillation (VF). Currently, defibrillation is the only
effective clinical treatment of this fatal arrhythmia. Although defibrillation mechanism has been investigated
extensively for many decades, its definite mechanism is still debated. It is known that understanding the basic
mechanism of defibrillation is essential to develop better treatment of VF. In the present article, seven
hypotheses commonly proposed as the mechanism of ventricular defibrillation are reviewed. Since research
in the field of defibrillation mechanism is dynamic, the present review is to update the information to clini-
cians and basic investigators on the mechanism of defibrillation available to date.
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Sudden cardiac death is a major health problem
in many industrialized countries including Thailand.
It is mainly caused by a lethal cardiac arrhythmia known
as ventricular fibrillation (VF)(1,2) VF has been charac-
terized as a rapid, disorganized, and asynchronous con-
traction of the ventricular muscle(3,4), which causes the
failure of the pumping function of the heart leading to
vital organ failure and causing death within minutes(5).
The most common underlying abnormality for the
development of VF is coronary artery disease(6-9). How-
ever, approximately 40% of the victims have no history
of heart disease(10). Although VF has been known for
over a century, there is only one effective treatment
for this fatal arrhythmia. It is known as electrical
defibrillation(11,12).

A large number of researches have been per-
formed to investigate how VF generates(13-25), and how
an electrical shock terminates it(26-32). Despite the extreme
efforts to overcome this fatal arrhythmia, it was not
until several decades ago that information obtained
from these studies helped to invent the first medical

device known to terminate VF as well as to prevent
sudden cardiac death in patients, the implantable car-
dioverter defibrillator (ICD). The idea of developing the
automatic ICD came from Mirowski(33) and Schuder(34),
who independently reported their work on the implan-
table device to terminate VF in dogs. Subsequently,
the idea was tirelessly tested in animal studies(35-40)

for more than 10 years before it was first implanted in
a human in 1980(41). The basic concept for this device
is the ability to detect the arrhythmia and deliver an
electric shock to defibrillate the heart and bring it back
to sinus rhythm as soon as possible without false
detection and false delivery of the shock.

After a decade of improvement, the ICD has
been referred to as the “gold standard” of anti-arrhyth-
mic therapy(42). However, the current ICD still needs
much improvement. This is due in part to our vague
understanding of the mechanism of ventricular defi-
brillation and how VF occurs. This article is deliberately
written to highlight some commonly proposed hypo-
theses that explain mechanisms of ventricular defibril-
lation.

The Probabilistic Nature of Ventricular Defibrillation
Ventricular defibrillation has been known to

be complicated. This is partly due to a distinct charac-
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teristic of defibrillation in that it is probabilistic in
nature. There is no discrete value for the shock
strength (i.e. defibrillation threshold) to indicate that
the shock strength at or above the defibrillation
threshold will always successfully defibrillate. In fact,
the relationship between the shock strength and the
successful defibrillation outcome is a sigmoid shape,
meaning that greater shock strengths are associated
with greater percentages of success(43). Many studies
of defibrillation have been done in the past decades
by using various shock strengths delivered at different
timing to understand the basic mechanism behind this
probabilistic nature. These data have helped inves-
tigators to hypothesize on the possible effects of the
shock on cardiac tissues and the relationship of these
effects to the shock outcome.

Mechanisms of Ventricular Defibrillation
The mechanism of ventricular defibrillation

has been extensively investigated for many decades.
However, the definite mechanism of defibrillation is
still unclear. Although many hypotheses have been
proposed, seven hypotheses on ventricular defibrilla-
tion are highlighted in the present review. Four of those
are most commonly proposed as the mechanism for
defibrillation at present. Interestingly, these four hypo-
theses are also related to the VF induction hypotheses.
A concept of each hypothesis will be discussed briefly
and whether it is a possible mechanism or not, accord-
ing to current research, will be emphasized.

The total extinction hypothesis
The total extinction hypothesis was proposed

by Wiggers in 1940(44). This hypothesis, which focused
on the termination of VF activation fronts by the shock,
stated that the shock must depolarize all excitable
tissues and stop all activation fronts present on the
entire ventricles during fibrillation in order to obtain a
successful outcome. It also implied that, after a failed
defibrillation, ventricular fibrillation is reinitiated by
any remaining activation front which was not halted
by the shock. However, the total extinction hypothesis
was later rejected by data from Zipes et al in 1975, who
demonstrated that not all tissues need to be depola-
rized to get a successful defibrillation(45).

The electrical paralysis hypothesis
In 1968, Dudel observed the absence of

cardiac electrical signals for seconds to minutes after
strong shocks were delivered that successfully
defibrillated(46). Based on this observation, he hypo-

thesized that the basic mechanism for successful
defibrillation was that shocks must be strong enough
to inactivate or paralyze cells for several seconds so
that they were not excitable within that period. This
hypothesis is sometimes called the “prolonged
depolarization” hypothesis because it was believed
that the shock must prolong the time until the first
post-shock activation occurs(47).

Later reports that activation is usually
observed less than a second after a defibrillation
shock(18,48) allowed the rejection of this hypothesis.
The prolonged depolarization after strong shocks
observed by Dudel may be caused by an electropora-
tion, i.e. a rupture of cardiac cell membrane, created by
the shocks which then altered ionic concentrations
inside the cells(49-51). Jones et al(49,52) confirmed this
concept when they found that the shocks created
“holes” in the cell membranes of cultured chick
embryo myocytes at a potential gradient of 200 V/cm.
According to this finding, electrical paralysis may
impede success in defibrillation because it can decrease
myocyte contractile function and may possibly induce
arrhythmias resulting from electroporation(51,53).

The critical mass hypothesis
The importance of a critical mass of the car-

diac tissue for maintaining fibrillation was first reported
by Garrey in 1914(54). He found that a fibrillating heart
would no longer fibrillate when the myocardial mass
of the heart was serially decreased into smaller pieces.
In the mid 1970s, studies on defibrillation showed that
successful defibrillation could occur when low-energy
shocks were delivered through transvenous catheters
(35,39,40). which suggested that the shock may need to
defibrillate only a critical mass of the ventricles to get
a successful outcome. These results challenged the
total extinction hypothesis for defibrillation but cor-
roborated Garrey’s early findings.

In 1975, Zipes et al provided further valida-
tion for this idea with their study(45) and proposed
that the shock does not need to stop all activation
fronts on the entire heart in order to successfully defib-
rillate, but only those occurring in the critical mass of
the ventricles. Activation fronts not terminated by the
shock in the remaining mass are not sufficient to main-
tain fibrillation and soon die out. This hypothesis is
known as the critical mass hypothesis. Failed defibril-
lation occurs because the shock failed to depolarize
the critical amount of cardiac cells, allowing the remain-
ing undisturbed cells to continue fibrillating, leading
the whole ventricles back into VF. Early studies reported
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that approximately 75% of the ventricular mass must
be depolarized by the shock to get a successful outcome
in dogs(45,54), but in a recent report, this critical mass
value was reported to be > 90%(55).

The upper limit of vulnerability hypothesis for
defibrillation

Since the implementation of multi-channel
electrical cardiac mapping systems, the understand-
ing of the defibrillation mechanism has advanced. New
findings obtained from these studies are not explained
by the critical mass hypothesis. Chen et al and Shibata
et al have demonstrated that the patterns of activation
fronts following defibrillation shocks were always
different from those before the shock in both success-
ful and failed defibrillation(48,56-58). These findings
countered the critical mass hypothesis because it
suggested that post-shock activations were not the
unaltered activations continuing from pre-shock acti-
vations. This led to a new explanation for the defibril-
lation mechanism, the upper limit of vulnerability (ULV)
hypothesis for defibrillation.

The ULV hypothesis for defibrillation states
that, in order to successfully defibrillate, a defibrilla-
tion shock must have two of the following affects on
the entire ventricles. First, the shock must stop all
activation fronts present at the time the shock is
delivered by either directly activating the myocardium
or by prolonging refractoriness of myocardium just
ahead of these activation fronts(59,60). Second, the
shock must not give rise to new activation fronts which
could propagate away from the border of the directly
excited region and reinitiate fibrillation(61). It also pos-
tulates that a shock that is slightly weaker than the
strength required to defibrillate terminates all activa-
tion fronts during VF, but also creates new activation
fronts by stimulating myocardium in some regions
during their vulnerable period, causing re-initiation of
VF. The ULV hypothesis for defibrillation is opposite
from the critical mass hypothesis because it suggests
that all activations must be terminated by the shock
and that activations which arise after the shock induce
VF by the same mechanism as induction of VF by deli-
very of a premature stimulus during the vulnerable
period(57).

Although many cardiac mapping studies
support the ULV hypothesis for defibrillation(48,55,62),
there are several conflicting studies(63,64). The studies
from Ideker’s group demonstrated that the earliest
activation, which appears in the weakest shock poten-
tial gradient region of the ventricle, has a different

activation pattern than those appearing before the
shock(48,56-58). If the earliest activation was an unaltered
continuation of a pre-shock activation, as the critical
mass hypothesis predicts, the activation pathway
would not be altered after the shock. They found that
the time interval between the last activation before
the shock and the earliest activation after the shock at
the earliest site is also significantly longer than the
cycle length of VF(48,56).

However, Witkowski et al(63) later indicated
statistically that the cycle length of activation during
VF at any recording site can vary within a + 2 stan-
dard deviation of the mean measured VF cycle length
at that site. Their data showed that the time intervals
between the last activation before the shock and the
earliest activation after the shock at the earliest site
were always within a + 2 standard deviation following
failed defibrillation, suggesting that the post-shock
activation was the continuation of activation before
the shock. Chen et al(57), however, have theoretically
shown that a new activation front arising after the
shock with a different activation pattern could also be
within that same range.

The most striking feature of the ULV hypo-
thesis is that it combines the mechanism of defibril-
lation and VF induction into one concept. It suggests
that failed defibrillation has the same underlying mecha-
nism as successful VF induction(18,61). One possible
explanation to support this concept is the formation
of a critical point, leading to reentry and VF in both
cases(47,60). However, the ULV hypothesis does not limit
itself solely to the critical point hypothesis because
there are several observations which the critical point
hypothesis cannot explain. For example, the existence
of a focal activation pattern following failed defibril-
lation(48,58) or successful VF induction(65) and type B
successful defibrillation(18) (ie, nonsustained repetitive
responses following shocks prior to a sinus beat) are
good examples of observations which cannot be
explained by the critical point hypothesis(47).

The refractory period extension hypothesis
It is known that the refractory period can be

prolonged when a strong stimulus is delivered to
relatively excitable cardiac cells(66,67). This finding is
true for a shock that is delivered during both pacing
cycles and fibrillation(68-70). The finding that the
refractory period extension is greater in successful
defibrillation than in failed defibrillation leads to the
proposed basic defibrillation mechanism known as the
refractory period extension hypothesis(11,66): This
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hypothesis states that a successful defibrillation shock
extends the refractory period of action potentials in
relative excitable myocardium and terminates VF
wavefronts by blocking their propagation throughout
the ventricles(11,63,69).

This hypothesis is likely to be the fundamen-
tal concept for both the critical mass and the ULV
hypothesis because blocking the propagation of all
activation fronts appearing throughout the ventricles
is important in successful defibrillation. One possible
way to block those activation fronts is to insure that
the shock prolongs the refractory period of the action
potential of the myocardium around the directly
excited region throughout the ventricles. This, therefore,
will prevent propagation of a new activation front.
The shock strength plays an important role in this case
because only a sufficiently strong shock producing
optimal potential gradient will prolong the refracto-
riness of the myocardium. Therefore, to successfully
defibrillate, the shock must create an optimal potential-
gradient in the weak-potential gradient region which
is far away from the defibrillation electrodes, in order
to successfully prolong the refractoriness of action
potentials in the low gradient areas. Several studies
(18,56,58) reported that a longer post-shock response
duration (an isoelectric window) has a higher success
rate of defibrillation, which is consistent with this
hypothesis.

Nonuniform dispersion of refractoriness on
the myocardium, proposed to be a mechanism for VF
induction, can also be a factor that may contribute to
failed defibrillation after the shock(71,72). Since different
strength shocks create different potential gradients
in high and low intensity regions, and a stronger shock
can prolong the refractoriness more than a weaker
shock, each shock strength may create a different
degree of refractory period extension at different regions
throughout the ventricles. A successful defibrillation
shock, therefore, causes a more uniform refractory
period extension, decreasing dispersion of refractori-
ness, throughout the ventricles(72,73).

The synchronized repolarization hypothesis
Synchronized repolarization or constant

repolarization time after the shock has been proposed
as another cellular response in successful defibrilla-
tion(74). The finding indicated that shocks could create
an additional phase of depolarization throughout all
phases, from just after completion of the upstroke (phase
0) to a nearly maximal repolarization time (late phase 3),
of the fibrillating action potentials. This hypothesis

states that the shocks cause the myocardium to repo-
larize at a constant time after the shock regardless of
its fibrillating electrical activity prior to the shock. This
constant repolarization time after the shock creates a
uniformly prolonged post-shock response duration
(an isoelectric window) as well as a reduction in dis-
persion of refractoriness in successful defibrillation.
So far, this hypothesis is supported by only one study
in an isolated perfused rabbit heart(74). A recent defibril-
lation study in pigs has demonstrated that synchro-
nized repolarization was observed following both
successful and failed shocks of near defibrillation
threshold in strength(75).

The virtual electrode polarization hypothesis
The latest mechanism of defibrillation is pro-

posed by Efimov and is known as the virtual electrode
polarization hypothesis(76). This is due to the findings
that defibrillation shocks delivered to cardiac tissues
can produce both depolarization and hyperpolariza-
tion in cardiac tissues adjacent to each other simulta-
neously(76,77). Therefore, if the optimal transmembrane
potential gradient between the depolarized and hyper-
polarized regions is met, activation fronts in the depo-
larized region can propagate into the hyperpolarized
region, leading to reentry and eventually VF. Currently,
the virtual electrode hypothesis and the ULV hypothe-
sis for defibrillation are the most debated hypotheses.

Pros and Cons on defibrillation mechanisms
Most mechanisms of defibrillation presented

in the present review propose that reentry is the post-
shock activation pattern responsible for failed defibril-
lation. However, recent electrical and optical mapping
studies have demonstrated otherwise. Following shocks
of strength near the defibrillation threshold (DFT),
recent electrical(78-80) and optical mapping studies(75)

have consistently demonstrated that the first few
post-shock cycles always arise in one region where
the weakest shock field is located. These early sites
give rise to activation fronts that propagate focally
across the entire epicardium in an organized, cohesive
cycle. For transvenous defibrillation with electrodes
in the right ventricle and superior vena cava, these early
sites are at the left ventricular apex(75). These early sites
give rise to rapid activations which either last for 5 or
more cycles before degenerating into VF in failed
defibrillation or spontaneously terminate after 1 or
more cycles in successful defibrillation. In both cases,
the characteristics of the first post-shock activation
are not different. However, successive cycles arise
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from the early sites faster and propagate slower in
failed defibrillation, whereas, they arise slower from
the early site and propagate faster across the ven-
tricles in successful defibrillation(78-80). No reentry was
present on the epicardium during the first 5 cycles. A
recent three-dimensional mapping study has demon-
strated similar results, suggesting that transmural or
endocardial reentry was not present following near
DFT shocks(81).

It has been postulated that these first few
rapid repetitive post-shock activations observed after
the shock could be caused by afterdepolarizations or
triggered activity(82,83). During VF, heart rate is greatly
elevated. Following a defibrillation shock, additional
factors such as increased sympathetic tone, myocar-
dial stretch, tissue damage, and reperfusion may be
involved. These factors alone or in an additive fashion
help promote delayed afterdepolarizations (DADs)
(84,85). In addition, recent optical mapping studies have
demonstrated that following near-DFT shocks, com-
plete repolarization is observed followed by a 40-60
ms quiescent period after which repetitive focal acti-
vations appear on the epicardium and later degenerate
into VF(75). This finding indicates that the first ectopic
cycle arises after complete repolarization is achieved
after the shock, suggesting that DADs are a possible
mechanism of the rapid repetitive post-shock activity.
Recently, defibrillation efficacy has been tested using
a DAD blocker which is shown to be able to signifi-
cantly decrease the DFT(86).

Conclusion
Defibrillation is very complicated. Despite

enormous research on the mechanisms of defibrilla-
tion, the definite mechanism is still controversial. It
is possible that all proposed hypotheses for defibril-
lation are true but for different circumstances(87).
Furthermore, most information regarding these hypo-
theses has been acquired from animal studies. They
have yet to be validated in the clinical setting since
the ultimate goal of research in this field is to under-
stand the mechanism of defibrillation and to improve
the treatment of VF in humans. Understanding the
mechanisms of defibrillation will assure a development
of better strategies to treat patients suffering from
lethal arrhythmias.
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Summary of Abbreviations
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สรีรวิทยาทางไฟฟ้าของการเกิดดีฟิบริเลช่ันในหัวใจทางคลินิก

สิริพร  ฉัตรทิพากร, นิพนธ์   ฉัตรทิพากร

การเสียชีวิตอย่างเฉียบพลันจากโรคหัวใจ เป็นปัญหาทางสุขภาพที่สำคัญในกลุ่มประเทศทางอุตสาหกรรม

รวมถึงประเทศไทยเองดว้ย สาเหตหุลักของการเสยีชีวิตชนิดน้ีมักมาจาก การทีหั่วใจห้องล่างเตน้ผิดจังหวะชนดิร้ายแรง

ท่ีเรียกว่า Ventricular Fibrillation (VF) ในปัจจุบันน้ี การรักษา VF มีอยู่เพียงวิธีเดียวคือ การปล่อยไฟฟ้าแรงสูงเข้าไป

ทำการช๊อคหัวใจ ที่เรียกว่า ดีฟิบริเลชั่น (Difibrillation) ถึงแม้ว่าการค้นคว้าวิจัยในกลไกการเกิด ดีฟิบริเลชั่น

ได้ทำมานานแล้ว ความเข้าใจในกลไกนี้ยังไม่ชัดเจน ในบทความนี้ เจ็ดสมมุติฐานของกลไกการเกิด ดีฟิบริเลชั่น

ได้ถูกนำมาเสนอ ทั้งนี ้เพื ่อจะได้เป็นข้อมูลในการช่วยให้เกิดความเข้าใจในเรื ่องของกลไกการเกิด ดีฟิบริเลชั่น

แก่แพทย์และนักวิจัยต่อไป


