

Biochemical Markers of Bone Turnover in Angiographically-demonstrated Coronary Artery Disease Patients and Healthy Thais

**NARAVAT POUNGVARIN, M.D.*,
NITHI MAHANONDA, M.D.**,
SASIKANT POKUM, B.Sc.*,**

**WATTANA LEOWATTANA, M.D.*,
KERTIJAI BHURIPANYO, M.D.**,
PATAMA WORAWATTANANON, B.Sc.***

Abstract

The patients with coronary artery disease (CAD) were suffering from dyspnea. Physical activity of these patients was limited. Their lifestyle may be contributory factors for osteoporosis. Recent research has shown that biochemical markers may be used to predict future bone loss and identify individuals at risk for osteoporosis. Our objectives were to estimate reference ranges of bone markers in healthy Thais and to compare bone turnover between 105 healthy people and 118 CAD patients by using biochemical markers of bone formation and resorption. Mean values of bone markers in controls and patients were 22.9 ± 12.9 , 21.6 ± 16.2 respectively for N-Mid osteocalcin and 0.45 ± 0.30 , 0.47 ± 0.37 respectively for β -Crosslaps. There was no statistical difference of N-Mid osteocalcin ($p=0.50$) and β -Crosslaps ($p=0.64$) values between groups. Our data from this study suggested that that CAD patients have no higher risk for osteoporosis than healthy people.

Key word : Coronary Artery Disease, Bone Marker, Osteocalcin, Crosslaps

**POUNGVARIN NA, LEOWATTANA W, MAHANONDA N,
BHURIPANYO K, POKUM S, WORAWATTANANON P
J Med Assoc Thai 2000; 83 (Suppl. 2): S13-S18**

Osteoporosis is common following cardiac transplantation and incidence of fracture is also high⁽¹⁾. It is associated with low serum vitamin D metabolites, high level of bone resorption markers, exposure to glucocorticoids, and low serum testosterone in men⁽²⁻⁴⁾. However, mean bone

mineral density may be low before the operation⁽⁵⁾. Low bone mass has been reported in patients with congestive heart failure and terminal heart disease⁽⁶⁻⁷⁾. Contributory factors in these patients include vitamin D deficiency, loop diuretics, dietary calcium deficiency, prerenal azotemia, hepatic congestion,

* Department of Clinical Pathology,

** Her Majesty Cardiac Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

and hypogonadism⁽⁶⁾. Lower pretransplant bone mineral density was associated with increasing fracture risk⁽⁵⁾.

In case of coronary artery disease (CAD) patients, the physical activity is limited by dyspnea on exertion. This effect depends on the severity of disease. A severe CAD patient is confined to bed by dyspnea. Thus, CAD patients may be at risk for osteoporosis due to sedentary lifestyle and immobilization. Furthermore, recent studies have shown that noncollagenous bone matrix proteins are also found in atherosclerotic vessels and may regulate dystrophic calcification. Osteocalcin, the marker of bone formation, may contribute to vessel wall calcification after a thrombotic or hemorrhagic event⁽⁸⁾. In this study, we evaluated a group of patients with CAD to compare two biochemical bone markers of bone turnover, osteocalcin and β -Crosslaps, with healthy controls.

MATERIAL AND METHOD

Study populations

We studied 118 CAD patients who attended Her Majesty Cardiac Center at Siriraj Hospital between 1998 and 1999; 82 were men and 36 were women. Exclusion criteria included primary hyperparathyroidism, renal disease and long term steroid therapy. These patients consisted of 36 with unstable angina pectoris and 82 with stable angina pectoris. Coronary artery lesions were angiographically verified in all cases. One hundred and five blood donors were used as control subjects, 48 were men and 57 were women.

Biochemical Markers of Bone Turnover

Clotted blood was collected and centrifuged at 3000 g for 15 minutes. The serum was stored at -70°C until analysis.

Osteocalcin in serum was determined by Elecsys N-Mid osteocalcin immunoassay (Roche Diagnostics, Switzerland). This sandwich immunoassay uses two polyclonal antibodies specifically directed against epitopes on the N-Mid fragment and the N-terminal of osteocalcin molecule (biotinylated monoclonal N-Mid osteocalcin-specific antibody and monoclonal N-Mid osteocalcin-specific antibody labeled with ruthenium complex).

β -CTx in serum was determined by Elecsys β -Crosslaps serum immunoassay (Roche Diagnostics, Switzerland) which recognized linear β -8AA octapeptides (EKAHD- β -GGR). This immu-

noassay quantifies all type I collagen degradation fragments that contain the isomerized octapeptide β -8AA by using biotinylated monoclonal anti- β -Crosslaps antibody and monoclonal β -Crosslaps-specific antibody labeled with ruthenium complex.

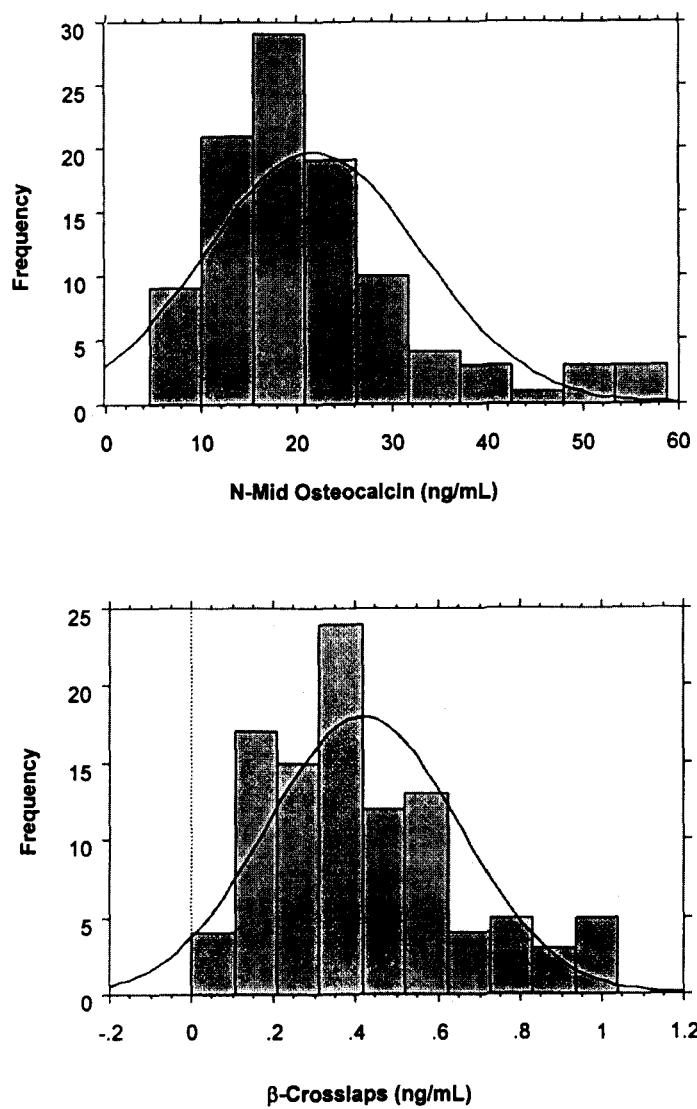
Coronary Angiography

Coronary angiography was performed on 118 CAD patients. All of these had at least 1 diseased coronary artery, defined as a reduction of the vessel diameter of at least 50 per cent.

Statistical Analysis

The StatView (Abacus, USA) program was used for statistical analysis. Unpaired *t* test was employed for analysis. Values of $p<0.05$ were considered statistically significant.

RESULTS


In the study of biochemical markers of bone turnover in 105 healthy adults, distributions of data were symmetrical as shown in Fig. 1. Values of N-Mid osteocalcin and β -Crosslaps were 22.9 ± 12.9 ng/mL and 0.45 ± 0.30 ng/mL respectively.

Differences of age, body mass index (BMI), osteocalcin, β -Crosslaps values in controls and CAD patients are shown in Table 1. Age and BMI of patients were slightly higher than healthy controls but not statistically significant ($p=0.07$ and 0.16 respectively). Osteocalcin and β -Crosslaps were also not different ($p=0.50$ and 0.64 respectively). We compared these values between stable and unstable angina as shown in Table 2. There was no difference in any result.

DISCUSSION

Osteoporosis has numerous etiologies. The CAD patients may also have reduced bone mineral density due to activity limitation and exposure to diuretics in some cases. Inoue M, et al examined the biochemical markers of bone turnover in six healthy volunteers who participated in 120 days of bed rest. They found an increase in bone resorption markers and a decrease in bone formation markers during bed rest⁽⁹⁾. If osteoporosis is common in patients with CAD, all patients should be evaluated for osteoporosis.

Osteoporosis is characterized by abnormalities of bone remodeling that can be assessed by biochemical markers of formation and resorption. Recent research has shown that bone markers may

Fig. 1 Distributions of N-Mid osteocalcin, and β -Crosslaps values in healthy Thais.

Table 1. Age, body mass index, N-Mid osteocalcin, and β -Crosslaps values in controls and CAD patients.

	Controls (n= 105)	CAD Patients (n=118)	p Value
Age, year	59 ± 10	61 ± 9	NS
Body mass index	24.3 ± 4.4	25.5 ± 3.7	NS
N-Mid Osteocalcin, ng/mL	22.9 ± 12.9	21.6 ± 16.2	NS
β -Crosslaps,ng/mL	0.45 ± 0.30	0.47 ± 0.37	NS

NS = not significant

Table 2. Age, body mass index, N-Mid osteocalcin, and β -Crosslaps values in patients with stable and unstable angina.

	Stable Angina (n=82)	Unstable Angina (n=36)	p Value
Age,year	60 \pm 10	62 \pm 8	NS
Body mass index	25.8 \pm 3.7	25.0 \pm 3.7	NS
N-Mid Osteocalcin, ng/mL	21.2 \pm 17.6	22.3 \pm 12.4	NS
β -Crosslaps, ng/mL	0.46 \pm 0.40	0.50 \pm 0.29	NS

NS = not significant

also be used to identify individual at risk for osteoporosis, predict future bone loss and hip fracture, select therapy, and predict and monitor the therapeutic response. To date, the most valuable markers of bone formation and resorption are N-Mid osteocalcin and β -Crosslaps respectively.

The study of N-Mid osteocalcin, and β -Crosslaps in 105 healthy Thais has shown that age and sex seem to influence all values. These markers of bone formation and resorption are highest in elderly females due to lack of estrogen. Many studies have shown that other bone markers were also significantly changed in different menopausal status or serum estradiol (E2) levels such as urinary cross-linked N-telopeptide of type 1 collagen (NTx)(10), deoxypyridinoline (Dpd) and pyridinoline (Pyd)(11). Pidetcha P, et al reported that urinary Dpd levels in postmenopausal Thai women was higher than premenopause but not statistically different(12). This correlation can be clearly demonstrated in the study of association between sex hormones and biochemical markers of bone turnover by Peichl P, et al(13).

Elderly males have a higher value of bone markers than younger males but not statistically significant in our study. The mechanisms of bone loss in this group are still unknown. Some studies indicated that bone mineral density was not correlated to androgen levels in older men and must be associated with other factors(14,15). Age-related bone loss may be the result of estrogen deficiency not just in postmenopausal women, but also in men(16).

The reference values of N-Mid osteocalcin in our study do not differ from values studied in a white population but β -Crosslaps values are higher. This finding may indicate interracial differences of β -Crosslaps. However, further study should be performed in large population to estimate reference ranges of bone markers in Thais.

Napal J, et al studied the serum level of osteocalcin in patients with acute myocardial infarction. The concentration of osteocalcin was significantly diminished. They were also studied in a group of patients with retinal detachment to exclude the immobilization as the cause of the decrease in serum osteocalcin and found that osteocalcin levels in this group were normal(17).

Our study, which compares the level of osteocalcin and β -Crosslaps between healthy controls and patients with angiographically-demonstrated CAD, shows no statistical difference in these markers of bone turnover. We assume that CAD patients have no higher risk for osteoporosis than normal people. However, some factors may disturb the results, including stability and diurnal variation of these bone markers(18). We use N-Mid osteocalcin to avoid the stability problem of intact osteocalcin and use fasting blood specimen to reduce circadian rhythm of bone markers, especially β -Crosslaps(19). Anyway, other bone markers should be studied to confirm the status of bone turnover in CAD patients because different markers reflect different events of sequence of bone remodeling.

(Received for publication on September 8, 2000)

REFERENCES

- Glendenning P, Kent GN, Adler BD, et al. High prevalence of osteoporosis in cardiac transplant recipients and discordance between biochemical turnover markers and bone histomorphometry. *Clin Endocrinol* 1999; 50: 347-55.
- Henderson NK, Sambrook PN, Kelly PJ, et al. Bone mineral loss and recovery after cardiac transplantation. *Lancet* 1995;346:905.
- Guo CY, Johnson A, Locke TJ, et al. Mechanisms of bone loss after cardiac transplantation. *Bone* 1998; 22: 267-71.
- Shane E, Rivas M, McMahon DJ, et al. Bone loss and turnover after cardiac transplantation. *J Clin Endocrinol Metab* 1997; 82:1497-506.
- Rodino MA, Shane E. Osteoporosis after organ transplantation. *Am J Med* 1998; 104:459-69.
- Shane E, Mancini D, Aaronson K, et al. Bone mass, vitamin D deficiency and hyperparathyroidism in congestive heart failure. *Am J Med* 1997;103:197-207.
- Christ E, Linka A, Junga G, et al. Bone density and laboratory parameters of bone metabolism in patients with terminal heart disease. *Schweiz Med Wochenschr* 1996; 126: 1553-9.
- Bini A, Mann KG, Kudryk BJ, et al. Noncollagenous bone matrix proteins, calcification, and thrombosis in carotid artery atherosclerosis. *Arterioscler Thromb Vasc Biol* 1999; 19:1852-61.
- Inoue M, Tanaka H, Moriwake T, et al. Altered biochemical markers of bone turnover in humans during 120 days of bed rest. *Bone* 2000; 26: 281-6.
- Lewis LL, Shaver JF, Woods NF, et al. Bone resorption levels by age and menopausal status in 5,157 women. *Menopause* 2000; 7: 42-52.
- Zittermann A, Schwarz I, Scheld K, et al. Physiologic fluctuations of serum estradiol levels influence biochemical markers of bone resorption in young women. *J Clin Endocrinol Metab* 2000; 85: 95-101.
- Pidetcha P, Intramanee S, Pratakarn K, et al. Reference value for urinary deoxypyridinoline as a specific marker for measuring bone resorption in Thais. *J Med Assoc Thai* 1999; 82: 1136-41.
- Peichl P, Griesmacher A, Pointinger P, et al. Association between female sex hormones and biochemical markers of bone turnover in peri- and postmenopausal women. *Calcif Tissue Int* 1998; 62: 388-94.
- Rapado A, Hawkins F, Sobrinho L, et al. Bone mineral density and androgen levels in elderly males. *Calcif Tissue Int* 1999; 65: 417-21.
- Kenny AM, Gallagher JC, Prestwood KM, et al. Bone density, bone turnover, and hormone levels in men over age 75. *J Gerontol A Biol Sci Med Sci* 1998; 53: M419-25.
- Khosla S, Melton LJ 3rd, Atkinson EJ, et al. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. *J Clin Endocrinol Metab* 1998;83:2266-74
- Napal J, Amado JA, Riancho JA, et al. Stress decreases the serum level of osteocalcin. *Bone Miner* 1993; 21: 113-8.
- Wichers M, Schmidt E, Bidlingmaier F, et al. Diurnal rhythm of Crosslaps in human serum. *Clin Chem* 1999; 45:1858-60.
- Christgau S. Circadian variation in serum Crosslaps concentration is reduced in fasting individuals. *Clin Chem* 2000; 46: 431.

ดัชนีทางชีวเคมีของกระดูกในกลุ่มผู้ป่วยโรคหลอดเลือดหัวใจและกลุ่มคนไทยที่มีสุขภาพดี

นรารรณ พวงวินท์ พ.บ.*, วัฒนา เสี้ยววัฒนา พ.บ.* นิติ มหานนท์ พ.บ.**,
เกียรติชัย ภริปัญญา พ.บ.**, ศศิกานต์ โพธิ์คำ, วท.บ.* ปัทมา วรวัฒนานนท์, วท.บ.*

กิจกรรมต่างๆ ในชีวิตประจำวันของผู้ป่วยโรคหลอดเลือดหัวใจมักจะถูกจำกัดเนื่องจากอาการหอบเหนื่อยเมื่อออกแรง การดัดแปลงในลักษณะตั้งกล่าวเป็นระยะเวลานานอาจเป็นปัจจัยส่งเสริมให้เกิดโรคกระดูกพรุน ในปัจจุบันพบว่า ดัชนีทางชีวเคมีของกระดูกมีประโยชน์ในการท่านายการสูญเสียเนื้อกระดูก และปัจจุบันความเสี่ยงในการเกิดโรคกระดูกพรุน การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อประเมินค่าอัตราอิ่งของดัชนีทางชีวเคมีของการสร้างและสลายเนื้อกระดูกโดยประมาณ จากกลุ่มคนไทยที่มีสุขภาพดี 105 คน และนำมาระบบเทียบกับผู้ป่วยโรคหลอดเลือดหัวใจ 118 คน ค่าเฉลี่ยของดัชนีทางชีวเคมีของกระดูกของผู้ที่มีสุขภาพดีและผู้ป่วยโรคหลอดเลือดหัวใจเท่ากับ 22.9 ± 12.9 , 21.6 ± 16.2 ตามลำดับสำหรับ เอ็น-มิด ออสทีโอแคลเซียม และ 0.45 ± 0.30 , 0.47 ± 0.37 ตามลำดับสำหรับเบต้า-ครอสแล็พซ์ ซึ่งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ จากการศึกษาครั้งนี้พอจะสรุปได้ว่าผู้ป่วยโรคหลอดเลือดหัวใจไม่ได้มีความเสี่ยงต่อการเกิดโรคกระดูกพรุนมากกว่าคนทั่วไป

คำสำคัญ : โรคหลอดเลือดหัวใจ, ดัชนีทางชีวเคมีของกระดูก, ออสทีโอแคลเซียม, ครอสแล็พซ์

นรารรณ พวงวินท์, วัฒนา เสี้ยววัฒนา, นิติ มหานนท์,
เกียรติชัย ภริปัญญา, ศศิกานต์ โพธิ์คำ, ปัทมา วรวัฒนานนท์
ฯดหมายเหตุทางแพทย์ ฯ 2543; 83 (ฉบับพิเศษ 2): S13-S18

* ภาควิชาพยาธิวิทยาลินิก,

** สำนักงานศูนย์โรคหัวใจสมเด็จพระบรมราชินีนาถ, คณะแพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10700