

Pulmonary Function and Exercise Challenge Test in Thai Children: 10 Years Post Respiratory Syncytial Virus Infection

PAISAL LERLUEDEEPORN, M.D.*,
AROONWAN PREUTTHIPAN, M.D.**

SUBHAREE SUWANJUTHA, M.D.**,

Abstract

Objective : To report the occurrence of asthma, pulmonary function and exercise challenge test abnormalities found in Thai children, who 10 years earlier had lower respiratory tract infection caused by respiratory syncytial virus (RSV-LRI).

Patients and Methods : 37 children, with RSV-LRI admitted at Ramathibodi Hospital during January 1986 through December 1987, were contacted, of whom 13 patients responded and completed history-review-questionnaires. Pulmonary function measurements at pre- and post-exercise and testing for bronchodilator response were performed.

Results : The occurrence of physician-diagnosed asthma in the patients with and without family history of allergic diseases was 75 per cent and 40 per cent, respectively. Of 11 patients who performed spirometry, 45 per cent had concave flow-volume curves, 36 per cent showed decreased ratio of forced expiratory flow in the first second (FEV₁) to forced vital capacity (FVC) and 27 per cent showed either decreased forced expiratory flow between 25-75 per cent of FVC (FEF_{25-75%}) or peak expiratory flow rate (PEFR). Of 8 patients who completed exercise challenge tests, 87.5 per cent showed markedly decreased PEFR at post exercise challenge tests and 37.5 per cent had markedly decreased FEV₁. 62.5 per cent and 25 per cent showed markedly increased PEFR and FEV, respectively, after inhalation of bronchodilators.

Conclusion : This study suggests that the occurrence of asthma in children, who had previous RSV-LRI, is relatively high compared with that reported in general Thai children. Baseline pulmonary function tests showed evidence of airway obstruction as demonstrated by concave-shaped flow-volume curves, decreased FEV₁/FVC ratio, FEF_{25-75%} and PEFR. The presence of bronchial hyperreactivity to exercise challenge test and positive response to bronchodilators confirms the evidence of exercise-induced bronchospasm in children with history of RSV-LRI.

Key word : Pulmonary Function, Exercise Test, RSV

* Allergy Unit, Division of Pediatrics, Queen Sirikit National Institute of Child Health, Children's Hospital, Department of Medical Services, Ministry of Public Health,

** Division of Pediatric Pulmonology and Critical Care, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.

Pneumonia is a leading cause of death in children under 5 years of age. In Thailand, 45 per cent of pneumonia in children under five were caused by viral infections and 45.2 per cent of these were respiratory syncytial virus (RSV) infection(1). Lower respiratory tract infection caused by RSV (RSV-LRI) may lead to frequent hospitalization(2), apnea, pneumothorax, bronchial hyperreactivity, bronchiolitis obliterans, unilateral hyperlucent lung and chronic obstructive pulmonary disease in adulthood(3). Most previous studies have shown evidence of abnormal pulmonary function tests (PFTs) indicating obstructive airway diseases and bronchial hyperreactivity after RSV infection(4-17).

In 1981, Stroke *et al* reported the increases in thoracic gas volume and inspired respiratory resistance in children who previously had acute bronchiolitis(6). In 1982, Pullen *et al* reported the evidence of obstructive airway diseases from PFTs, 10 years after RSV infection(7). In 1984, Hall *et al* showed evidence of decreased oxygen saturation and forced expiratory flow between 25-75 per cent of forced vital capacity (FEF_{25-75%})(8). In 1993, Welliver *et al* found an abnormal methacholine challenge test and evidence of obstructive airway disease(9). The objective of this study is to report the occurrence of asthma and the percentage of PFTs and exercise challenge test abnormalities found in Thai children, 10 years after RSV-LRI.

PATIENTS AND METHOD

This study is a cross-sectional, descriptive study. The patients with RSV-LRI, admitted at Ramathibodi Hospital during 1986 and 1987, were recruited from 49 patients with RSV-LRI participating in BOSTID project study on etiology and development of acute respiratory infections in Thai children(1). Thirty-seven patients had complete address and of these 13 patients responded. Data were gathered from questionnaires and hospital records to determine the occurrence of physician-diagnosed asthma, wheezing and family history of allergic diseases. Baseline pulmonary function measurements were performed before exercise challenge tests. To achieve the maximal exercise level, patients were informed to exercise on a treadmill until their heart rates increased up to 189 beats per minute. Pulmonary function measurements were subsequently performed at 5, 10 and 15 minutes after exercise. Each patient received inhaled rapid acting bronchodilator, followed by a spirometric

measurement to assess a bronchodilator response. We used the criteria of abnormal exercise challenge and positive bronchodilator response written in the exercise stress test protocol, 1994, Johns Hopkins Children's Center. The predicted values of all PFTs except peak expiratory flow rate (PEFR) were obtained from a study done in normal Thai children by Suwanjutha *et al*(18). The predicted values of PEFR were obtained from a study by Hsu *et al*(19).

RESULTS

Thirteen patients with RSV-LRI were recruited. Eleven patients performed acceptable spirometry. Two patients were unable to perform spirometry due to mild to moderate mental retardation. Eight patients were able to complete exercise challenge tests. Three patients had oxygen desaturation during exercise and had to terminate the tests before they could achieve the maximal exercise level.

Among 13 patients, the mean age at onset of RSV-LRI was 1 1/12 years. The mean age at the last follow-up was 12 2/12 years. Male to female ratio was 5 to 8 (1:1.6). The clinical histories and previous respiratory illnesses obtained by the questionnaires and hospital records are shown in Table 1.

Table 1. Clinical histories and respiratory illnesses of 13 patients.

	N	%
Family history for allergic diseases	8	62
Physician-diagnosed asthma	8	62
Recurrent wheeze	8	62
History of exercise-induced bronchospasm	6	46
Breathing difficulties improved by bronchodilators	6	46
Presence of wheeze at onset of RSV infection	4	31
Parental smoking in house	5	39

Table 2. Baseline pulmonary function tests of 11 patients.

	N	%
Normal	6	55
FEV ₁ < 80% of predicted value	1	9
FEV ₁ /FVC ratio < 80%	4	36
FEF _{25-75%} < 65% of predicted value	3	27
PEFR < 80% of predicted value	3	27
Concave flow-volume curve	5	45

Table 3. Exercise challenge test and bronchodilator response of 8 patients.

	N	%
Normal	1	12.5
Wheeze during and after exercise	0	0
Decreased $FEV_1 \geq 10\%$ at 5 or 10 or 15 min after exercise	3	37.5
Decreased PEFR $\geq 12.5\%$ at 5 or 10 or 15 min after exercise	7	87.5
Increased $FEV_1 \geq 10\%$ after bronchodilators	2	25.0
Increased PEFR $\geq 12.5\%$ after bronchodilators	5	62.5

The occurrences of physician-diagnosed asthma in children with and without a family history of allergic diseases were 6 of 8 (75%) and 2 of 5 (40%), respectively. This percentage is relatively high compared with the occurrence of asthma reported in general Thai children(20).

The results of PFTs were analyzed and interpreted by using the American Thoracic Society standard method. Of 11 patients, 6 (55%) had normal baseline PFTs, 5 (45%) had concave shape of flow-volume curves indicating variable intrathoracic airway obstruction, 4 (36%) showed decreased ratio of forced expiratory flow in the first second (FEV_1) to forced vital capacity (FVC) and 3 (27%) showed either decreased $FEF_{25-75\%}$ or PEFR, as shown in Table 2.

The results of exercise challenge testing are shown in Table 3. Of 8 patients, 7 (87.5%) showed significant decreases in either FEV_1 or PEFR after exercise. Only one patient had decreases in both FEV_1 and PEFR. Five (62.5%) showed marked increases in either FEV_1 or PEFR after inhalation of bronchodilators.

DISCUSSION

We found that children with RSV-LRI, whose family had atopic diseases, had a higher occurrence of physician-diagnosed asthma than children whose families were free of these diseases. In comparison with the occurrence of asthma in general Thai children surveyed by ISAAC (International Study of Asthma and Allergy in Children) questionnaires(20). In this study, the occurrence of asthma was 75 per cent and 40 per cent in children with a without family history of atopy, respectively.

The occurrence of recurrent wheezing is also high, approximately 62 per cent, and mostly appeared 2-5 years after RSV infection, which is similar to other previous studies(7,9,11,14).

Abnormal baseline PFTs were found in nearly half of the children with RSV-LRI. The most common abnormality is the concave shape of flow-volume curves followed by decreased FEV_1/FVC ratio, decreased $FEF_{25-75\%}$ and decreased PEFR, all of which indicate the evidence of airway obstruction without restrictive pulmonary disease. Most of the children, who completed exercise challenge testing, showed exercise-induced-bronchial hyperreactivity as demonstrated by the decreases in either PEFR or FEV_1 . This evidence is comparable to earlier studies(4,7,9), that found positive exercise challenge test between 22-70 per cent, depending on methods and criteria of positive test. Furthermore 62.5 per cent of the children revealed good responses to rapid acting bronchodilators. These findings additionally suggest that RSV may lead to lower airway obstruction and bronchial hyperreactivity in children(4-17).

A limitation of this study was a small sample size mainly due to inability to contact or search for the target patients who 10 years earlier had RSV-LRI. Recruited children might have more serious illness and the parents were probably more concerned about the child's condition. On the contrary, parents of children without ongoing respiratory illness might be less concerned and refused to participate in the study. This selection bias may contribute to the high occurrence of asthma, abnormal PFTs and exercise challenge test found in our study. A cohort study is preferably needed to avoid this specific problem.

In conclusion, we have strengthened the postulation that RSV-LRI is one of the precipitating cause of asthma(4-17). The occurrence of physician-diagnosed asthma in children with RSV-LRI is relatively high compared with that found in general Thai children. Baseline PFTs showed evidences of airway obstruction as demonstrated by concave-shaped flow-volume curves, decreased FEV_1/FVC ratio, $FEF_{25-75\%}$ and PEFR. The presence of bronchial hyperreactivity to exercise challenge test and positive response to bronchodilators demonstrates the evidence of exercise-induced bronchospasm among children with history of RSV-LRI.

REFERENCES

1. Suwanjutha S, Chantarojanasiri T, Watthana-kasetr S, et al. A study of nonbacterial agents of acute lower respiratory tract infection in Thai children. *Rev Infect Dis* 1990; 12(Suppl 8):S923-8.
2. Henry RL, Hodges IGC, Milner AD, Strokes GM. Respiratory problems 2 years after acute bronchiolitis in infancy. *Arch Dis Child* 1983; 58: 713-6.
3. Laraya-Cuasay L. Respiratory sequelae of viral infections. In: Hilman BC, ed. *Pediatric respiratory disease: diagnosis and treatment*. Philadelphia: WB Saunders, 1993:290-6.
4. Sim DG, Downham MAPS, Gardner PS, Webb JG, Weightman D. Study of 8-year-old children with a history of respiratory syncytial virus bronchiolitis in infancy. *BMJ* 1978; 1:11-4.
5. Sim DG, Gardner PS, Weightman D, et al. Atopy does not predispose to RSV bronchiolitis and post-bronchiolitic wheezing. *BMJ* 1981; 282:2086-8.
6. Stroke GM, Milner AD, Hodges IC, Groggins RC. Lung function abnormalities after acute bronchiolitis. *J Pediatr* 1981; 98:871-4.
7. Pullan CR, Hey EN. Wheezing, asthma and pulmonary dysfunction 10 years after infection with respiratory syncytial virus in infancy. *BMJ* 1982; 284:1665-9.
8. Hall CB, Hall WJ, Gala CL, MaGill FB, Leddy JP. Long-term prospective study in children after respiratory syncytial virus infection. *J Pediatr* 1984; 105:358-64.
9. Welliver CR, Duffy L. The relationship of RSV-specific immunoglobulin E antibody responses in infancy, recurrent wheezing and pulmonary dysfunction at ages 7-8 years. *Pediatr Pulmonol* 1993; 15:19-27.
10. McConnochie KM, Roghmann KJ. Predicting clinically significant lower respiratory tract illness in childhood following mild bronchiolitis. *Am J Dis Child* 1985; 139:625-31.
11. Rylander E, Eriksson M, Feyschuss U. Risk factors for occasional and recurrent wheezing after RSV infection in infancy. *Acta Paediatr Scand* 1988; 77:711-5.
12. Sly PD, Hibbert ME. Childhood asthma following hospitalization with acute viral bronchiolitis in infancy. *Pediatr Pulmonol* 1989; 7:153-8.
13. Murray M, Webb MSC, O'Callaghan C, et al. Respiratory status and allergy after bronchiolitis. *Arch Dis Child* 1992; 67:482-7.
14. McConnochie KM, Roghmann KJ. Bronchiolitis as a possible cause of wheezing in childhood: new evidence. *Pediatrics* 1984; 74:1-10.
15. Korppi M, Reijonen T, Poysa L, Jutunen-Backman K. A 2-to-3-year outcome after bronchiolitis. *Am J Dis Child* 1993; 147:628-31.
16. Sigurs N, Bjarnason R, Sigur Bergsson F, et al. Eosinophil cationic protein in nasal secretion and in serum and myeloperoxidase in serum during and after respiratory syncytial virus bronchiolitis. Relation to asthma and development of atopy in children followed prospectively for two years. *Acta Paediatr* 1994; 83:1151-5.
17. Mok JYQ, Simpson H. Symptoms, atopy and bronchial reactivity after lower respiratory tract infection. *Arch Dis Child* 1984; 59:299-305.
18. Suwanjutha S, Watthana-Kasetr S, Inthraphuvasak V, Bunyaprasidhi P. Pulmonary function and anthropometric study in Thai children in Bangkok and Ratchaburi Provinces. *Siriraj Hosp Gaz* 1983; 35: 873-86.
19. Hsu KH, Jenkins DE, Hsu BP, et al. Ventilatory functions of normal children and young adults-Mexican-American, white and black: I Spirometry. *J Pediatr* 1979; 95:14-23.
20. Vichyanond P, Jirapongsananurak O, Visitsuntorn N, Tuchinda M. Prevalence of asthma, rhinitis and eczema in children from Bangkok area by using the ISAAC (International Study for Asthma and Allergy in Children) questionnaires. *J Med Assoc Thai* 1998; 81:175-84.

การทดสอบสมรรถภาพปอด และความไวต่อการกระตุ้นของหลอดลมด้วยวิธี ออกกำลังกายในเด็ก 10 ปี ภายหลังการติดเชื้อไวรัส อาร์โนส์ ในระบบ ทางเดินหายใจส่วนล่าง

ไพศาล เลิศฤทธิ์พร, พ.บ.*,
สุวารี สุวรรณจุฑะ, พ.บ.**, อรุณวรรณ พฤทธิพันธุ์, พ.บ.**

ผู้ป่วยเด็กที่มีการติดเชื้อของระบบหายใจส่วนล่างจากเชื้อ respiratory syncytial virus (RSV) มักพบอุบัติการของโรคหอบหืดและการมีความไวเกินต่อการกระตุ้นของหลอดลมในระยะต่อมาสูงกว่าปกติ ผู้วิจัยได้ทำการศึกษาผู้ป่วยจำนวน 13 ราย ซึ่งคัดมาจากผู้ป่วยเด็กที่มีการติดเชื้อของระบบหายใจส่วนล่างจากเชื้อ RSV ที่เข้ารับการรักษาในโรงพยาบาลรามาธิบดี ระหว่างปี พ.ศ.2529-2530 จำนวน 37 ราย พนวจมีอุบัติการของโรคหอบหืดมากกว่าในประชากรปกติ โดยพบผู้ป่วยที่ได้รับการวินิจฉัยจากแพทย์ว่าเป็นหอบหืดที่มีและไม่มีประวัติโรคภูมิแพ้ในครอบครัว คิดเป็นร้อยละ 75 และร้อยละ 40 ตามลำดับ ผลการทดสอบสมรรถภาพปอดในผู้ป่วยจำนวน 11 ราย พนความผิดปกติของรูปร่าง flow-volume curve เป็นแบบ concave ซึ่งบ่งชี้ถึง small airway obstruction ร้อยละ 45 พนวจมีการลดต่ำลงของค่า FEV₁/FVC ร้อยละ 36 มีการลดต่ำลงของ FEF_{25-75%} หรือ PEFR อย่างใดอย่างหนึ่ง เท่ากับร้อยละ 18 ผลการทดสอบ exercise challenge test ในผู้ป่วย 8 ราย พนมีการลดต่ำลงของ PEFR ร้อยละ 87.5 มีการลดต่ำลงของค่า FEV₁ ร้อยละ 37.5 เมื่อทดสอบการตอบสนองต่อการสูดหายใจหลอดลมพบว่ามีการเพิ่มขึ้นของค่า PEFR และ FEV₁ เท่ากับร้อยละ 62.5 และ 25 ตามลำดับ

สรุป การศึกษาครั้งนี้ให้เห็นว่า ผู้ป่วยเด็กที่มีการติดเชื้อของระบบหายใจส่วนล่างจากเชื้อ RSV มีอุบัติการของหอบหืดมากกว่าอุบัติการในเด็กไทยปกติ และมีความผิดปกติของค่าสมรรถภาพปอดค่อนข้างสูง โดยพบความผิดปกติแบบ concave flow-volume curve มากที่สุด ความผิดปกติส่วนใหญ่บ่งชี้ถึง peripheral airway obstruction นอกจากนี้ยังพบว่าผู้ป่วยบางรายมีความไวเกินต่อการประดุ้นของหลอดลมด้วยวิธีการออกกำลังกาย และตอบสนองดีต่อการสูดหายใจหลอดลมด้วย

คำสำคัญ : Pulmonary Function, Exercise Test, RSV

* หน่วยโรคภูมิแพ้, กลุ่มงานกุมารเวชกรรม, สถาบันสุขภาพเด็กแห่งชาติมหาราชินี, กรมการแพทย์ กระทรวงสาธารณสุข, กรุงเทพฯ 10400

** หน่วยโรคระบบหายใจเด็ก, ภาควิชากุมารเวชศาสตร์, คณะแพทยศาสตร์โรงพยาบาลรามาธิบดี, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10400