

# Association of mdr1 Gene Expression with Other Prognostic Factors and Clinical Outcome in Human Breast Cancer

BOONNUM PUNYAMMALEE, D.Sc.\*,  
WICHAI PURISA, B.Sc.\*,

SUPHON MANOROMANA, M.D.\*\*,  
SUNANTA CHARIYALERTSAK, M.Sc.\*,  
BUDSABA RERKAMNUAYCHOK, D.M.Sc.\*\*\*

## Abstract

Multidrug resistance of cancer (CA) is one of a major problems in CA chemotherapy that is frequently associated with the expression of P-glycoprotein (P-gp) encoded by mdr1 genes. However, the controversial results exist regarding to the significance of mdr1 gene expression on clinical drug resistance to chemotherapy of breast CA cells. Recent evidence reported a strong correlation between the increased P-gp levels and the prognosis in advanced breast CA. The current study investigated whether mdr1 gene expression has any impact on prognosis and response to chemotherapy in breast CA patients. We determined mdr1 expression in 127 primary and 8 locally relapsed breast CA using a sensitive, specific and quantitative technique based on a RT-PCR and Southern blot hybridization detection by non-radioactive labelled-probe. In patients with primary breast CA, mdr1 expression were negative (mdr1-ve), low (<10 units), high ( $\geq$ 10 units) in 63.8, 8.7 and 27.5 per cent of the patients, respectively. No differences in age, menopause status, tumor size, stage, lymph node involvement, estrogen receptor level and p53 level were observed between mdr1-ve and mdr1+ve expression patients. However, mdr1 gene expression is often associated with number of positive lymph nodes and negative estrogen receptors ( $p = 0.008$  and 0.0007, respectively). In locally relapsed cases, mdr1-ve was 62.5 per cent whereas 37.5 per cent were mdr1+ve with high level of mdr1 RNA. No differences in other prognostic factors: lymph nodal involvement, estrogen receptor level and p53 level, were detected in both groups. Response to chemotherapy in primary and recurrent breast CA was not different in mdr1-ve and mdr1+ve patients. Finally, our results show that mdr1 gene expression is frequently present in breast CA both before and after chemotherapy. Association of mdr1 gene overexpression with other two prognostic factors suggests that they may confer a more aggressive nature of the tumor, drug resistance and poor prognosis. Evaluation of these factors may improve the ability to identify and select breast CA patients at high risk for poor prognosis for aggressive treatment. However, in this series response to CMF chemotherapy of primary and locally recurrent breast CA were not affected by the presence or absence of mdr1 gene product.

\* Research Division,

\*\* Division of Medical Oncology, National Cancer Institute, Department of Medical Services, Ministry of Public Health, Bangkok 10400,

\*\*\* Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.

Many human CA have been cured by combination chemotherapeutic drugs, however intrinsic and acquired drug resistance remain to be a major hindrance to successful treatment of many other CA<sup>(1)</sup>. One of the mechanisms responsible for drug resistance is the increased synthesis of P-gp found in cell lines selectively grown in increasing levels of structurally and functionally unrelated hydrophobic compounds such as anthracyclines, vinca alkaloids, dactinomycin, colchicine, epipodophyllotoxins and paclitaxel<sup>(2-7)</sup>. Cells selected by one of these drugs have cross-resistant phenotypes to all of them. This multidrug resistance is the result of reduced intracellular drug concentration due to pumping drugs out of cells through the action of P-gp<sup>(3,8)</sup>. The 170 kd transmembrane glycoprotein encoding by a human mdr1 gene is highly expressed in a number of normal tissues such as colon, kidney, liver, adrenal gland and some bone marrow stem cells where it is thought to function as a pump transporting toxins, drugs and hormones out of cells<sup>(9-11)</sup>.

Several human CA both untreated and treated with chemotherapeutic drugs frequently have mdr1 gene expression<sup>(10,12-16)</sup>. Some CA, including CA of colon, kidney and liver known to be intrinsically resistant to anti-cancer drugs express high mdr1 RNA. Some CA such as breast CA and lymphoma which are initially chemoresponsive but acquire resistance after therapy have increasing P-gp level<sup>(17,18)</sup>. This information suggests that mdr1 gene expression might play a role in resistance of CA cells to cytotoxic drugs. However, clinical studies reported thus far showed inconsistent correlation between the level of mdr1 gene expression and clinical drug resistance in some CA, such as lung and breast CA<sup>(19,20)</sup>. Recent studies reported a strong correlation between the presence of increased levels of either P-gp alone or P-gp together with mutant p53, with the shorter survival in locally advanced breast CA patients<sup>(21,22)</sup>. Despite the small number of patients enrolled in these studies, their findings have stimulated interest in studying prognostic implications of P-gp.

The current study has investigated the association of mdr1 gene expression with other prognostic factors in a large number of breast CA patients. We have also analyzed the impact of mdr1 gene expression on clinical outcome. Tumors of primary CA both untreated and treated and of

locally relapse were studied using reverse transcription-polymerase chain reaction (RT-PCR) Southern hybridization technique which enables the measurement of mdr1 mRNA levels in small samples and allows to detect a low level of mdr1 expression in those clinical samples.

## MATERIAL AND METHOD

### Tissue samples

Tumor samples were obtained from 144 patients who underwent surgery for breast CA at the National Cancer Institute, Thailand. Within 1 h after surgical excision, all samples were stored as small pieces of tissue and kept frozen in liquid nitrogen until use.

### Cell lines

Drug-sensitive KB-3-1 and multidrug-resistant KB-V-1 epidermoid carcinoma cell lines were kindly provided by Dr Ira Pastan, National Cancer Institute, Bethesda. KB-V-1 contains 100 fold amplification of the mdr1 gene and expresses mdr1 mRNA at a very high level. Cells were grown in Dulbecco's modified Eagle's medium, 15 per cent fetal bovine serum, penicillin-streptomycin and glutamine. KB-V-1 were grown in the presence of 1  $\mu$ g/ml vinblastine.

### RNA isolation

Total cellular RNA was prepared by acid guanidinium thiocyanate-phenol-chloroform extraction<sup>(23)</sup>. Approximately 0.1 g of breast tissue was chopped into small pieces, placed in 2 ml of denaturing solution (D soln, 4M guanidine isothiocyanate / 25mM sodium citrate pH 7.0 / 0.5% sarcosyl / 0.1M 2-mercaptoethanol) and rapidly homogenized with intermittent storing on ice. Sequentially, 0.2 ml 2M sodium acetate pH 4.0, 2 ml of water-saturated phenol, and 0.4 ml of a chloroform-isoamylalcohol mixture (49:1 v/v) were added to homogenate with thorough mixing by inversion and vigorously vortexing in the last step. The mixture was stored on ice for 15 min and centrifuged at 3,000 rpm for 40 min at 4°C. The aqueous phase was then transferred to a fresh tube and the RNA was precipitated with ethanol at -20°C overnight. RNA pellet was dissolved in 0.3 ml D soln and was reprecipitated with ethanol at -20°C 1 h, centrifuged 13,000 rpm for 15 min at 4°C, washed once in 70 per cent ethanol, vacuum-dried for 15 min, dissolved in an appropriate amount of diethyl-

pyrocarbonate (DEPC)-water and kept at -80°C until needed. RNA yield was quantitated by UV spectrophotometer at the OD260.

mdr1 RNA levels of tumor specimens and cell lines were determined using RT-PCR-Southern hybridization.

#### cDNA synthesis

Total RNA was converted to cDNA by reverse transcription reaction (RT) which was carried out as follows. Two hundred and fifty ng of total RNA in 5 µl distilled water was heated to 80°C for 5 min and quickly chilled on ice for 5 min. Afterwards cDNA was synthesized in a mixture containing total RNA, 5 µl of 5xRT buffer (94 mM Tris-HCl pH 6.9, 453 mM MgCl<sub>2</sub>, 750 mM β-NAD, 50 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, BRL), 1 µl of random hexadeoxy-nucleotide primer (100 pmol, Promega), 2 µl of dNTP (1 mM each), 0.5 µl of RNase H<sup>-</sup> reverse transcriptase (200 U, BRL), 1 µl of Dithiothreitol (0.1 M DTT) and 10 µl of distilled water. The mixture was incubated at 25°C for 10 min and followed by 37°C, 30 min. To terminate reaction, the tube was heated at 95°C for 5 min, then chilled immediately on ice and stored until subsequent PCR.

#### PCR

cDNA aliquots derived from 50 ng of total RNA were used for DNA amplification by PCR using 1 unit of Taq DNA polymerase (Promega) in a final volume of 50 µl. Thirty cycles of PCR were carried out using a DNA thermal cycle model 480 (Perkin-Elmer/Cetus). Each cycle of PCR included 30 sec of denaturation at 94°C, followed by 30 sec of primer annealing at 55°C and 30 sec of extension at 72°C. Primers used for amplification of mdr1-specific sequences and β2-microglobulin (β2m)-specific sequences were according to Noonan *et al*(24). The sequence of mdr1- and β2m forward primers were CCCAT CATTGCAATAGCAGG, bases 2596-2615 and ACCCCCCTGAAAAAGATGA, bases 1544-1563 respectively. The mdr1- and β2m reverse primer were AGTCCTCGTCTCAAACCTG, bases 2733-2752 and GTAGTACCTC-CAAACTTCTA, bases 2253-2262 and 3508-3517. Each primer was added at 10 pmol per reaction. PCR using mdr1 primers gives 157 base-pair (bp) amplified product and β2m primers gives 120 bp product. PCR products were separated on 2 per cent Nusieve 3:1 agarose gels (FMC Bioproducts), stained with ethidium

bromide and viewed with a transilluminator. Negative and positive control reactions were included in each experiment where 250 ng of total RNA from KB-3-1 drug sensitive and KB-V-1 multidrug resistant cells were used.

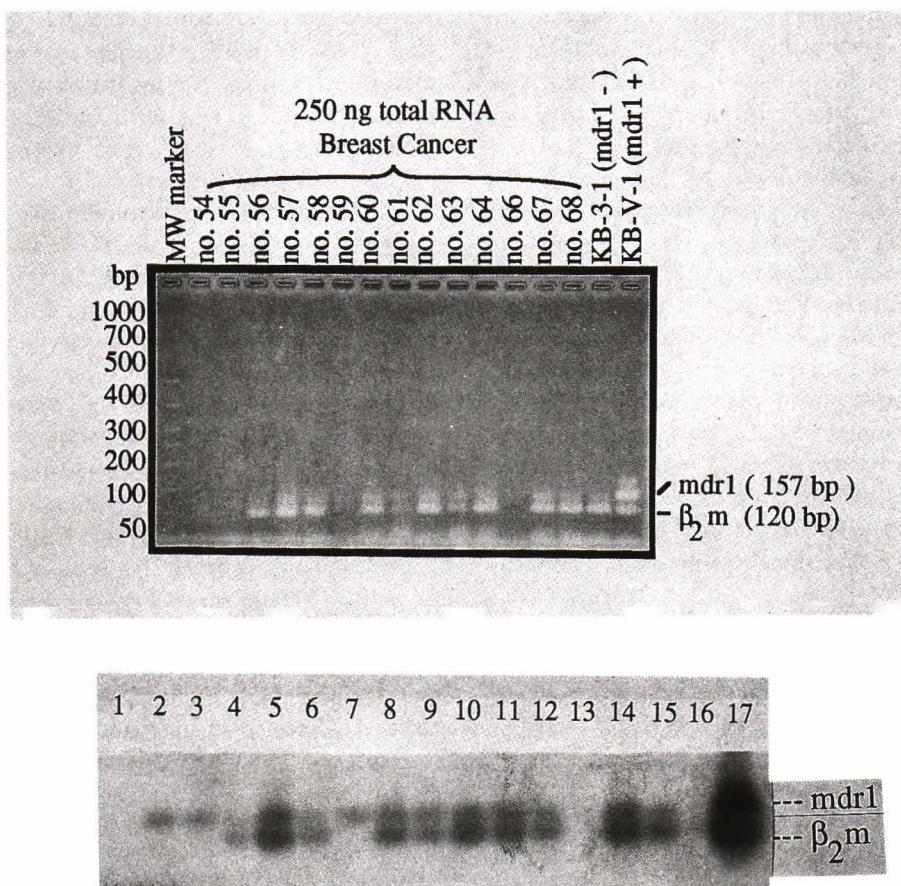
#### Southern blotting and hybridization

For a more definite identification of the products, amplified DNA was blotted onto nylon membrane filter (Magnagraph, MSI) by capillary transfer overnight(25). Next morning the blot was rinsed briefly in 6x saline-sodium citrate buffer (5x SSC) to remove the adhering gel and dried at room temperature (rt) by placing the filter upward. The DNA was fixed to the membrane by baking at 80°C for 2 h. After fixation, filter was prehybridized in 50 per cent formamide, 5x SSC, 1 per cent blocking solution, 0.1 per cent N-lauroylsarcosine, 0.02 per cent sodium dodecyl sulphate (SDS) at 42°C for at least 1 h. Hybridization was performed at 42°C for at least 6 h with two probes, mdr1- and β2m probe labelled with digoxigenin-dideoxyuridine triphosphate (DIG-ddUTP), simultaneously. After hybridization, the filter was washed twice for 5 min at rt in 2x SSC, 0.1 per cent SDS. Then 0.1x SSC, 0.1 per cent SDS that had been warmed to 42°C was added twice at 15 min intervals. Filter can then be used directly for detection of hybridized DNA or stored air-dried for later detection.

#### Immunological detection

Hybridized filters were detected by incubating at rt for 30 min with anti-DIG-alkaline phosphatase conjugate. The excess unbound antibody-conjugate was removed by washing twice for 15 min rt in buffer containing 0.1 M maleic acid, 0.15 M NaCl pH 7.5. The color reaction was developed at alkaline pH by the addition of colorless substrate 5-bromo-4-chloro-3-indoyl phosphate (X-phosphate) and nitroblue-tetrazolium salt (NBT) at rt in dark. When the purple color precipitate was clearly formed (within 1-24 h), the reaction was then terminated by washing the filters for 5 min with 10 mM Tris HCl, 1 mM EDTA pH 8.0.

The mdr1 and β2m bands was quantified by scanning with image analyzer (ID Advanced Programme, AAB, U.S.A.). The values for RT-PCR were determined by subtracting the mdr1 value obtained in the KB-3-1 and normalizing against the β2m results. β2m expression was used to com-


pensate for the different amounts of RNA loaded and to rule out false negativity.

#### DNA labelling

Labelling of oligonucleotide primer with DIG-ddUTP : To prepare mdr1 and  $\beta$ 2m probe, mdr1- and  $\beta$ 2m forward primer (100 pmol) were separately labelled at its 3'-end with terminal transferase by incorporation of a DIG-ddUTP using DIG oligonucleotide 3'-end labelling kit (Boehringer).

#### Statistical analysis

Statistical evaluations were performed with the Chi-square test ( $\chi^2$ ) to compare levels of mdr1 gene expression with menopause status, several prognostic factors (age, tumor size, number of lymph node involvement, estrogen receptor and p53 expression) and clinical outcome. Fisher's exact test was used for a sample size smaller than 15. A p value of less than 0.05 was considered statistically significant.



**Fig. 1.** (A) Amplified mdr1 and  $\beta$ 2m-specific PCR products with RNA from breast cancers (lane 2-15), drug sensitive KB-3-1 (lane 16) and multidrug-resistant KB-V-1 (lane 17). After reverse transcription of 250 ng of total RNA, the complementary DNA was amplified by PCR. All aliquots of reaction mixture were subjected to 2% Nusieve agarose gel electrophoresis and stained with ethidium bromide. Arrows indicate the band of  $\beta$ 2m (120 bp) and mdr1 (157 bp) sequences. The leftmost lane is 100 bp DNA marker.

(B) Southern hybridization analysis of mdr1 and  $\beta$ 2m-specific PCR products with mdr1 and  $\beta$ 2m-specific probe labelled with DIG-ddUTP. After 6 h hybridization, the hybridized probes were detected by anti-DIG-alkaline phosphatase conjugate and then developed color in X-phosphate substrate and NBT solution.

## RESULTS

### Quantitation of mdr1 RNA

Determination of mdr1 RNA levels was possible in 135 samples while in 9 samples mdr1 RNA levels were excluded from evaluation because of poor quality of the isolated RNA. 127 of the evaluable samples were obtained from patients with primary breast CA at the time of initial diagnosis (124 cases) or at the delayed surgery after chemotherapy (3 cases). Eight were from locally relapsed disease following conventional therapy (surgery and/or chemotherapy). All samples were analyzed by RT-PCR Southern hybridization. As shown in Fig. 1A, some variations in the intensity of mdr1 and  $\beta$ 2m PCR band were evident between samples. Both drug-sensitive cell control KB-3-1 and multidrug-resistant KB-V-1 showed a comparable signal of  $\beta$ 2m product but only KB-V-1 gave a prominent mdr1-specific signal. These PCR products were blotted and probed to confirm the evidence of mdr1 and  $\beta$ 2m expression (Fig. 1B). Variations in the mdr1 signals on ethidium bromide gel occurred in parallel with variations in the intensity of hybridization signals, indicating minor unevenness in blotting. Surprisingly,  $\beta$ 2m signal in KB-3-1 negative control observed on ethidium bromide gel gave very low signal intensity after hybridization step. This could be due to the detection error. An arbitrary value of 100 units (U) was assigned to the mdr1 RNA expression of 250 ng of total RNA from KB-V-1 cells. Mdr1 expression level in each sample was expressed relatively to the signal obtained from KB-V-1 which usually gave a reproducible and distinct signal.

### Mdr1 RNA levels in breast CA

Mdr1 RNA levels were negative in 81/127 (63.8%) and positive in 46/127 (36.2%) of the primary breast CA with low expression (<10 U) in 11/127 (8.7%) and high expression ( $\geq$ 10 U) in 35/127 (27.5%) of the samples (Table 1). Among 127 primary breast CA, there were 3 samples from patients previously treated by 4, 6 and 12 courses of CMF (cyclophosphamide + methotrexate + 5-fluorouracil), 1 had no detectable level of mdr1 RNA, 1 had low mdr1 and 1 had high mdr1 expression level. In local relapses, mdr1 RNA levels were negative in 5/8 (62.5%) and positive in 3/8 (37.5%). Only high expression was observed in all 3 mdr1+ve cases. Although this is a limited

number of patients, it is of interest because it may reflect the acquired expression of mdr1 after previous therapy and may represent acquired resistance secondary to this overexpression.

### Relationship to clinicopathologic characters and prognostic factors

The age, histology, tumor size, lymph node involvement, metastasis, stage, estrogen receptor (ER) status, p53 protein expression and mdr1 RNA expression of the patients with primary breast CA are summarized in Table 2 and 3. The mean age of 127 patients was  $50.2 \pm 12$ , ranged 28-81 years. 73 were premenopausal and 54 postmenopausal women. In regard to age or menopause status, there was no significant difference in the incidence of mdr1 gene expression ( $\chi^2 = 2.37$  and 2.3, respectively).

Among 127 cases of primary breast CA, 124 were classified as ductal adenocarcinoma: 115 invasive ductal carcinoma (IDC), 9 intraductal carcinoma (ITDC). 3 were classified as lobular carcinoma. Mdr1+ve was observed in 41/115 (35.7%) of IDCs and 4/9 (44.4%) of ITDCs (data not shown). Thus, mdr1+ve was 45/46 (98%) in ductal adenocarcinoma type and 1/46 (2%) in lobular carcinoma type. Analogous results of mdr1-ve were 79/81 (98%) and 2/81 (2%) in ductal and lobular carcinoma, respectively. Size of primary tumors were not different between mdr1 RNA-ve and mdr1 RNA+ve patients ( $\chi^2 = 2.3$ ). The distribution of lymph node-negative versus node-positive was nearly the same in mdr1-ve and mdr1+ve cases ( $\chi^2 = 0.745$ ). Expression of the mdr1 gene was never detected in untreated primary tumor of the 5 patients who had distant metastases but 1

Table 1. MDR1 gene expression in primary and locally relapsed breast cancers.

| MDR1 levels         | Primary         | Locally relapsed |
|---------------------|-----------------|------------------|
|                     | cases (%)       | cases (%)        |
| Negative            | 81/127 (63.8 %) | 5/8 (62.5 %)     |
| Positive            | 46/127 (36.2 %) | 3/8 (37.5 %)     |
| Low (<10 U)         | 11 (8.7 %)      | 0                |
| High ( $\geq$ 10 U) | 35 (27.5 %)     | 3 (37.5%)        |

Table 2. MDR1 expression levels and clinical data of patients with primary breast cancer.

|                       | All patients  | MDR1 negative   | MDR1 positive   |                 |               | $\chi^2$ test | Correlation p value |
|-----------------------|---------------|-----------------|-----------------|-----------------|---------------|---------------|---------------------|
|                       |               |                 | Total           | Low             | High          |               |                     |
| n                     | 127           | 81              | 46              | 11              | 35            |               |                     |
| Age (yr)              |               |                 |                 |                 |               |               |                     |
| Mean $\pm$ SD         | 50.2 $\pm$ 12 | 50.6 $\pm$ 12.4 | 49.4 $\pm$ 11.3 | 49.4 $\pm$ 12.6 | 49.4 $\pm$ 11 | 2.37          | .585                |
| Range                 | 28 - 81       | 28 - 81         | 35 - 80         | 35 - 80         | 36 - 77       |               |                     |
| Menopause status      |               |                 |                 |                 |               |               |                     |
| Premenopausal         | 73 (57%)      | 42 (52%)        | 31 (67%)        | 11              | 20            | 2.3           | .09                 |
| Postmenopausal        | 54 (43%)      | 39 (48%)        | 15 (33%)        | 4               | 11            |               |                     |
| Histology             |               |                 |                 |                 |               |               |                     |
| Ductal adenocarcinoma | 124 (98%)     | 79 (98%)        | 45 (98%)        | 15 (100%)       | 30 (98%)      | .51           | .195                |
| Lobular carcinoma     | 3 ( 2%)       | 2 ( 2%)         | 1 ( 2%)         | 0               | 1 ( 2%)       |               |                     |
| Tumor size            |               |                 |                 |                 |               |               |                     |
| T1                    | 25 (20%)      | 17 (21%)        | 8 (17%)         | 1               | 7             |               |                     |
| T2                    | 76 (60%)      | 48 (59%)        | 28 (61%)        | 9               | 19            |               |                     |
| T3                    | 8 ( 6%)       | 4 ( 5%)         | 4 ( 9%)         | 1               | 3             | 2.3           | .82                 |
| T4                    | 18 (14%)      | 12 (15%)        | 6 (13%)         | 4               | 2             |               |                     |
| Lymph node            |               |                 |                 |                 |               |               |                     |
| N0                    | 56 (44%)      | 35 (43%)        | 21 (46%)        | 8               | 13            |               |                     |
| N1,2,3                | 69 (54%)      | 46 (57%)        | 23 (50%)        | 7               | 16            | .745          | .008 *              |
| Nx                    | 2 ( 2%)       | 0               | 2 ( 4%)         | 0               | 2             |               |                     |
| Metastasis            |               |                 |                 |                 |               |               |                     |
| M0                    | 116 (91%)     | 72 (89%)        | 44 (96%)        | 15              | 29            |               |                     |
| M1                    | 5 ( 4%)       | 5 ( 6%)         | 0               | 0               | 0             | .45           | .873                |
| Mx                    | 6 ( 5%)       | 4 ( 5%)         | 2 ( 4%)         | 0               | 2             |               |                     |
| Tumor staging         |               |                 |                 |                 |               |               |                     |
| I                     | 15 (12%)      | 10 (12%)        | 5 (11%)         | 1               | 4             |               |                     |
| IIA                   | 46 (36%)      | 27 (34%)        | 19 (41%)        | 6               | 13            | .30           |                     |
| IIB                   | 37 (29%)      | 25 (31%)        | 12 (26%)        | 3               | 9             | .15           |                     |
| IIIA                  | 8 ( 6%)       | 4 ( 5%)         | 4 ( 9%)         | 1               | 3             | .11           | .547                |
| IIIB                  | 16 (13%)      | 10 (12%)        | 6 (13%)         | 4               | 2             | .017          |                     |
| IV                    | 5 ( 4%)       | 5 ( 6%)         | 0               | 0               | 0             | 4.35 *        |                     |

All comparisons are not significant ( $p > .05$ ) except \*

Table 3. Association between MDR1 expression levels and estrogen receptors and p53 expression in patients with primary breast cancer.

|              | Total patients | MDR1 negative | MDR1 positive |     |      | $\chi^2$ test | Correlation p value |
|--------------|----------------|---------------|---------------|-----|------|---------------|---------------------|
|              |                |               | Total         | Low | High |               |                     |
| n            | 126            | 80            | 46            | 15  | 31   |               |                     |
| ER-negative  | 67 (53%)       | 42 (53%)      | 25 (54%)      | 7   | 18   | .15           | .0007               |
| ER-positive  | 59 (47%)       | 38 (47%)      | 21 (46%)      | 8   | 13   | NS            | S                   |
| n            | 120            | 75            | 45            | 15  | 30   |               |                     |
| p53-negative | 83 (69%)       | 48 (64%)      | 35 (78%)      | 9   | 26   | 3.42          | .201                |
| p53-positive | 37 (31%)       | 27 (36%)      | 10 (22%)      | 6   | 4    | NS            | NS                  |

NS = No Significance ; S= Significance

Table 4. MDR1 expression levels and clinical data of patients with locally relapsed breast cancer.

|                       | All patients    | MDR1 negative   | MDR1 positive | Correlation p value |
|-----------------------|-----------------|-----------------|---------------|---------------------|
| n                     | 8               | 5               | 3             |                     |
| Age (yr)              |                 |                 |               |                     |
| Mean $\pm$ SD         | 47.5 $\pm$ 6.48 | 50.8 $\pm$ 5.26 | 42 $\pm$ 4.36 | .104                |
| Range                 | 39 - 57         | 46 - 57         | 39 - 47       | NS                  |
| Menopause status      |                 |                 |               |                     |
| Premenopausal         | 5 (63%)         | 2 (40%)         | 3 (100%)      | .141                |
| Postmenopausal        | 3 (37%)         | 3 (60%)         | 0             | NS                  |
| Histology             |                 |                 |               |                     |
| Ductal adenocarcinoma | 7 (88%)         | 5 (100%)        | 2 (67%)       | .42                 |
| Lobular carcinoma     | 1 (12%)         | 0               | 1 (33%)       | NS                  |
| Tumor size            |                 |                 |               |                     |
| T1                    | 0               | 0               | 0             |                     |
| T2                    | 3 (38%)         | 1 (20%)         | 2 (67%)       | .662                |
| T3                    | 1 (12%)         | 1 (20%)         | 0             | NS                  |
| T4                    | 4 (50%)         | 3 (60%)         | 1 (33%)       |                     |
| Lymph node            |                 |                 |               |                     |
| N0                    | 3 (38%)         | 2 (40%)         | 1 (33%)       | .798                |
| N1,2,3                | 5 (62%)         | 3 (60%)         | 2 (67%)       | NS                  |
| Metastasis            |                 |                 |               |                     |
| M0                    | 6 (75%)         | 3 (60%)         | 3 (100%)      | .5                  |
| M1                    | 1 (12.5%)       | 1 (20%)         | 0             | NS                  |
| Mx                    | 1 (12.5%)       | 1 (20%)         | 0             |                     |
| Tumor staging         |                 |                 |               |                     |
| I                     | 0               | 0               | 0             |                     |
| IIA                   | 1 (12.5%)       | 1 (20%)         | 0             |                     |
| IIB                   | 2 (25%)         | 0               | 2 (67%)       | .751                |
| IIIA                  | 1 (12.5%)       | 1 (20%)         | 0             | NS                  |
| IIIB                  | 3 (37.5%)       | 2 (40%)         | 1 (33%)       |                     |
| IV                    | 1 (12.5%)       | 1 (20%)         | 0             |                     |

NS = No Significance

treated primary CA patient without metastasis who had mdr1+ve, developed metastasis 3 months later. No difference in tumor stage was found in the two mdr1 groups except stage IV tumor where all tumor had mdr1 RNA-ve. ( $\chi^2 = 4.35$  p<.05; significance). Estrogen receptors were detected in 59/126 (47%) of the primary CA but no significant difference in receptor positivity was seen between mdr1-ve and mdr1+ve group ( $\chi^2 = 0.15$ ). P53 overexpression was detected in 31 per cent of the patients, nevertheless, p53 levels were independent of mdr1 RNA levels ( $\chi^2 = 3.42$ ). A correlation between mdr1 RNA level and lymph node involvement and negative ER was found in primary breast CA (p = 0.008 and 0.0007, respectively).

There exists no relationship between p53 accumulation and mdr1 expression status (p = 0.201). Approximately 3/127 (2%) of primary CA received chemotherapy before surgical resection. The results described above did not significantly change when the 3 treated patients were omitted from analyses.

As shown in Table 4 and 5, relapsed patients had a mean age less than 50 years (mean = 47.5, range 39-57), 63 per cent were premenopausal and had high-risk characteristics of several parameters: large tumor size >2 cm 5/8 (62 %), negative ER status 3/7 (43%) and overexpression of p53 protein 3/8 (37%). However, no significant changes in mdr1 expression were associated with any established prognostic factor mentioned above.

**Table 5.** Association between MDR1 expression levels and estrogen receptors and p53 expression in patients with locally relapsed breast cancers.

|              | Total patients | MDR1 negative | MDR1 positive | Correlation p value |
|--------------|----------------|---------------|---------------|---------------------|
| n            | 7              | 4             | 3             |                     |
| ER-negative  | 4 (57%)        | 2 (50%)       | 2 (67%)       | .252                |
| ER-positive  | 3 (43%)        | 2 (50%)       | 1 (33%)       | NS                  |
| n            | 8              | 5             | 3             |                     |
| p53-negative | 5 (63%)        | 4 (80%)       | 1 (33%)       | .516                |
| p53-positive | 3 (37%)        | 1 (20%)       | 2 (67%)       | NS                  |

NS = No Significance

**Table 6.** Association between MDR1 expression levels and clinical outcome in chemotherapy- and non-chemotherapy treated breast cancer patients.

|                                       | Chemotherapy <sup>a</sup> |           |         |         |         | Non-chemotherapy <sup>b</sup> |          |          |
|---------------------------------------|---------------------------|-----------|---------|---------|---------|-------------------------------|----------|----------|
|                                       | Total                     | CR        | PR      | NR      | NE      | Total                         | CR       | NR       |
| <u>Primary breast cancer</u>          |                           |           |         |         |         |                               |          |          |
| n                                     | 91                        | 68        | 4       | 12      | 7       | 36                            | 34       | 2        |
| MDR1-negative                         | 54                        | 41 (60%)  | 3 (75%) | 7 (58%) | 3 (43%) | 27                            | 25 (74%) | 2 (100%) |
| MDR1-positive                         | 37                        | 27 (40%)  | 1 (25%) | 5 (42%) | 4 (57%) | 9                             | 9 (26%)  | 0        |
| Low                                   |                           | 9         | 0       | 0       | 2       |                               |          | 4        |
| High                                  |                           | 18        | 1       | 5       | 2       |                               |          | 5        |
| $\chi^2$                              |                           | .12 (NS)  |         |         |         |                               |          |          |
| Correlation, p value                  |                           | .246 (NS) |         |         |         |                               |          |          |
| <u>Locally relapsed breast cancer</u> |                           |           |         |         |         |                               |          |          |
| n                                     | 6                         | 3         |         | 3       |         |                               |          |          |
| MDR1-negative                         | 3                         | 1         |         | 2       |         |                               |          |          |
| MDR1-positive                         | 3                         | 2         |         | 1       |         |                               |          |          |
| $\chi^2$                              |                           | 1.0 (NS)  |         |         |         |                               |          |          |
| Correlation, p value                  |                           | .53 (NS)  |         |         |         |                               |          |          |

<sup>a</sup> cyclophosphamide + methotrexate + 5-fluorouracil<sup>b</sup> surgery only or surgery + hormonal therapy

CR: Complete Response; PR: Partial Response; NR: No Response; NE: No Evaluation or loss to clinic; NS: No Significance

In this small sample size, distant metastasis was never detected in all 3 positive mdr1. In contrast, 1 of the 3 mdr1-ve patients had metastasis.

### Relationship to clinical outcome

Chemotherapy response is shown in Table 6. Of the 91 primary CA treated with adjuvant chemotherapy (CMF regimen), complete remission of the tumor was identified in 68 patients, 4 had partial response, 12 had no response while 7 were not evaluated or lost to clinic. 54 of 91 patients had mdr1 RNA-ve whereas the other 37 had mdr1 +ve. However, there was no direct association between the level of mdr1 RNA and the initial response to chemotherapy ( $\chi^2 = 0.12$ ). Moreover, intrinsic mdr1 RNA levels did not correlate with the incidence of relapse after surgery since mdr1 +ve and mdr1-ve patients developed local relapses at the same rate (13.5% and 13%, respectively) within 9 to 36 months after complete remission (data not shown). When considered the 3 cases treated with chemotherapy before resection, complete response of the tumor was identified in 1 patient having mdr1-ve and 1 having low mdr1 expression (4 U). The latter case developed metastasis after 8 months and died. The last patient (mdr1 = 11U) had partial response and had poor evolution.

Of the 8 relapsed patients, clinical outcome was available on 6 patients and two were lost from the clinic after surgery. High mdr1 RNA expression was detected in 3 cases. All were treated with CMF combination therapy, 1 had no response to chemotherapy and 2 had complete response. For those 3 patients who had mdr1-ve, 2 had no response and 1 had complete remission. Again, no significant association in chemotherapy response was found between mdr1 gene-ve and mdr1 gene+ve tumors (Fisher's exact test = 1.0).

### DISCUSSION

The controversy regarding whether or not overexpression of mdr1 gene results in clinical drug resistance and poor response of breast CA to chemotherapy urged us to investigate the association of mdr1 expression with response to chemotherapy. Our results demonstrate the increased mdr1 RNA levels in 36.2 per cent of primary breast CA with high levels (10-66 U) in 27.5 per cent of the tumor samples. Our results are in agreement

with several reports in which increased mdr1 expression had been detected in primary breast CA using different approaches. Goldstein *et al*(13) reported mdr1 RNA levels between 2 and 29 U in 15 per cent of breast CA biopsies while Keith *et al*(18) demonstrated increased mdr1 gene expression in 51 per cent of breast CA. Likewise, Wallner *et al*(26) reported elevated mdr1 RNA levels in 46 per cent primary breast CA with high levels in 17 per cent of the specimens. However, two independent studies employing Northern blot analysis showed that increased mdr1 RNA was never detected in 219 and 34 of both untreated and treated primary CA(19,27). The variations in the incidence of tumors with detectable mdr1 RNA may result from variations in the detection techniques, tumor etiology, tumor grading and genetic background of individuals.

Our findings of a broad range of mdr1 gene expression in untreated and treated primary breast tumors and high level expression in local relapses support the hypothesis that drug-resistant cancer cells exist already in untreated tumors rather than induced by chemotherapy. These cells are then subsequently selected by chemotherapy, clonally expand and probably acquire increased expression of the mdr1 gene.

We did not find an association of mdr1 gene expression with response to chemotherapy in both primary and relapsing tumors. Two possible explanations are that the anti-cancer drugs we used are not the substrates which can bind to P-gp, thus it is likely that expression of the mdr1 gene in breast CA cells did not affect tumor response of breast CA patients. Another likely explanation is that other mechanisms of drug resistance may play a role. Our study on clinical follow-up in patients receiving chemotherapy did not directly answer whether mdr1 expression has a role in chemoresistance of breast tumor. However, the evidence from *in vitro* study(18) where human breast CA cells with high mdr1 RNA levels required higher drug concentrations for growth inhibition comparing to cells with low mdr1 levels implies that mdr1 gene expression may have the impact on tumor response in breast CA patients if drugs bind to P-gp (eg anthracyclines). Therefore, evaluation of mdr1 gene expression in CA cells should be considered prior to chemotherapy in breast CA patients.

The prognosis of breast CA and the response to therapy of individual tumors are contingent on biological behavior of the disease. The most well-characterized indicators of poor prognosis include poor nuclear grade, large tumor size and increasing numbers of lymph nodes involved. Other potential markers of poor prognosis are a high DNA content, a high proliferative index, overexpression of c-erbB2 oncoprotein and / or overexpression of mutated p53 tumor suppressor gene. The presence of the hormonal receptors: ER and progesterone receptor (PR), is of particular interest in breast cancer prognosis(29,30). Overexpression of mdrl gene product, P-gp, has been reported to have association with a poor prognosis for some groups of patients. Indeed, association of P-gp overexpression with other prognostic factors such as c-erbB2 (HER-2/neu) oncoprotein and mutant p53 tumor suppressor protein has been found in locally advanced breast CA(22,28). Expression of P-gp alone or co-expression of P-gp with p53 is strongly associated with shorter survival in these patients(21,22). In our experience, although no association of mdrl expression with mutant p53 was detected, we found association of mdrl expression with other two established prognostic factors, positive lymph node and negative ER status. Combination of these factors may result in a more aggressive nature of the tumor, drug resistance and poor prognosis. Our finding suggests that mdrl status might be used to identify breast CA patients at high risk for poor prognosis and thus serve as a prognostic marker to select patients for aggressive treatment. Clinical follow-up in this study population will help to establish the significance of mdrl expression on disease-free survival and overall survival of breast CA patients.

Local recurrent breast CA are relatively common in younger premenopausal Thai women who had high-risk phenotypes of several biological parameters. Although we have seen the similar pattern of the distribution of mdrl expression in both primary and local recurrent breast tumors, we found no correlation of mdrl expression with lymph node, ER or other parameters in the latter group. This might be due to the limited number of patients in this group.

In conclusion, our study demonstrates that mdrl is expressed in both primary and locally recurring breast CA at the same rate. Its expression is often associated with the number of metastatic lymph nodes and low expression of hormonal receptors in the group of primary tumors only and suggests that mdrl expression status of the primary breast tissue might be used in combination with other prognostic markers to predict patients with poor prognosis. Nevertheless, in our series response to CMF chemotherapy of both primary and local recurrent breast tumor was not affected by the presence or absence of mdrl gene product.

#### ACKNOWLEDGEMENTS

This work was supported in part by grant from Foundation of National Cancer Institute, Thailand. The authors are grateful for this support. The authors wish to thank all the staff of the Oncological Surgery Division for providing tumor samples. We also thank the staff of the Medical Oncology Division and of the Planning and Statistics Division, National Cancer Institute, Ministry of Public Health, Thailand for supplying clinical data. We also thank Dr Ira Pastan, National Cancer Institute, National Institute of Health, Bethesda, Maryland for kindly providing MDR cell lines.

(Received for publication on July 11, 1997)

## REFERENCES

1. O'Bryan RM, Luce JK, Talley RW, et al. Phase II evaluation of adriamycin in human neoplasia. *Cancer* 1973; 32 : 1-8.
2. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic and cytogenetic studies. *Cancer Res* 1970; 30 : 1174-84.
3. Ling V, Thompson LH. Reduced permeability in Chinese hamster ovarian cells as a mechanism of resistance to colchicine. *J Cell Physiol* 1973; 83 : 103-16.
4. Beck WT, Mueller TJ, Tanzer LR. Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts. *Cancer Res* 1979; 39 : 2070-6.
5. Akiyama SI, Fojo A, Hanover JA, et al. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. *Somatic Cell Mol Genet* 1985; 11 : 117-26.
6. Roninson IB, Chin JE, Choi KG, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. *Proc Natl Acad Sci USA* 1986; 83: 4538-42.
7. Shen DW, Cardarelli C, Hwang J, et al. Multiple drug resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, Adriamycin, or vinblastine show changes in expression of specific proteins. *J Biol Chem* 1986; 261: 7762-70.
8. Fojo AT, Akiyama SI, Gottesman MM, et al. Reduced drug accumulation in multiple drug-resistant human KB carcinoma cell lines. *Cancer Res* 1985; 45: 3002-7.
9. Chen C, Chin J, Ueda K, et al. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. *Cell* 1986; 47: 381-9.
10. Fojo AT, Ueda K, Slamon DJ, et al. Expression of a multidrug resistance gene in human tumors and tissues. *Proc Natl Acad Sci USA* 1987; 84: 265-9.
11. Schinkel AH, Borst P. Multidrug resistance mediated by P-glycoproteins. *Semin Cancer Biol* 1991; 2: 213- 26.
12. Bell DR, Gerlach JH, Kartner N, et al. Detection of P-glycoprotein in ovarian cancer: a molecular marker associated with multidrug resistance. *J Clin Oncol* 1985; 3 : 311-5.
13. Goldstein LJ, Galski H, Fojo AT, et al. Expression of a multidrug resistance gene in human cancers. *J Natl Cancer Inst* 1989; 81 : 116-24.
14. Gerlach JH, Bell DR, Karakousis C, et al. P-glycoprotein in human sarcoma: evidence for multidrug resistance. *J Clin Oncol* 1987; 5: 1452-60.
15. Sugawara I, Kataoka I, Morishita Y, et al. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. *Cancer Res* 1988; 48: 1926-9.
16. Fojo AT, Shen DW, Mickley LA, et al. Intrinsic drug resistance in human kidney cancer is associated with expression of a human multidrug resistance gene. *J Clin Oncol* 1987; 5: 1922-7.
17. Sanfilippo O, Ronchi E, de Marco C, et al. Expression of P-glycoprotein in breast cancer tissue and in vitro resistance to doxorubicin and vincristine. *Eur J Cancer* 1991; 27: 155-8.
18. Keith WN, Stallard S, Brown R. Expression of mdr1 and gst-p in human breast tumours: comparison to in vitro chemosensitivity. *Br J Cancer* 1990; 61: 712-6.
19. Merkel DE, Fuqua SAW, Tandon AK, et al. Electrophoretic analysis of 248 clinical breast cancer specimens for P-glycoprotein overexpression or gene amplification. *J Clin Oncol* 1989; 7: 1129-36.
20. Weber JM, Sircar S, Horvath J, et al. Non-p-glycoprotein-mediated multidrug resistance in detransformed rat cells selected for resistance to methylglyoxal bis (guanylhydrazone). *Cancer Res* 1989; 49: 5779-83.
21. Verelle P, Meissonnier F, Fonck Y, et al. Clinical relevance of immunohistochemical detection of multidrug resistance of P-glycoprotein in breast carcinoma. *J Natl Cancer Inst* 1991; 83: 111-6.
22. Linn SC, Honkoop AH, Hoekman K, et al. P53 and P-glycoprotein are often co-expressed and are associated with poor prognosis in breast cancer. *Br J Cancer* 1996; 74 : 63-8.
23. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol- chloroform extraction. *Anal Biochem* 1987; 162 : 156-9.
24. Noonan KE, Beck C, Holzmayer TA, et al. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. *Proc Natl Acad Sci USA* 1990; 87: 7160-4.
25. Sambrook J, Fritsch EF, Maniatis T. Analysis of genomic DNA by Southern hybridization. In : Molecular cloning : a laboratory manual 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 1989 : 9.31-9.46.
26. Wallner J, Depisch D, Hopfner M, et al. MDR1 gene expression and prognostic factors in primary breast carcinomas. *Eur J Cancer* 1991; 27: 1352-5.
27. Hennequin E, Delvincourt C, Pourny C, et al. Expression of mdr1 gene in human breast primary

tumors and metastases. *Breast Cancer Res Treat* 1993; 26: 267-74.

28. Schneider J, Rubio MP, Barbazan MJ, et al. P-glycoprotein, Her-2/neu, and mutant p53 expression in human gynecologic tumors. *J Natl Cancer Inst* 1994; 86: 850-5.

29. Leis HP. Prognostic parameters for breast carcinoma. *The breast*. In: Bland KI, Copeland EM, eds. WB Saunders, Philadelphia. 1991 : 331-50.

30. Elledge RM, McGuire WL, Osborne CK. Prognostic factors in breast cancer. *Semin Oncol* 1992; 19 : 244-53.

## ความสัมพันธ์ของยีนดีอียากับปัจจัยช่วยการพยากรณ์โรคและการตอบสนองต่อเคมีบำบัดในมะเร็งเต้านม

บุญนำ พันธุ์แย้มมาลี, D.Sc.\*, สุพล มโนรมณ์, พ.บ.\*\*,

วิชัย บุรีสา, วท.บ.\*, สุนันทา จริยาเลิศศักดิ์, วท.ม.\*, บุษบา ฤกษ์อ่อนวายโชค, D.M.Sc.\*\*\*

การดีอียากของเซลล์มะเร็ง นับเป็นอุปสรรคสำคัญอันหนึ่งต่อการรักษาโรคมะเร็งด้วยยาเคมีเนื่องจากยีนดีอียา mdr1 ในเซลล์มะเร็งนั้นมีการแสดงออกผลิตสารไกลโคโปรตีน P-gp ออกมายาในปริมาณมากเพื่อทำหน้าที่ขับยาออกนอกเซลล์ อย่างไรก็หลักฐานที่แสดงว่าอีนีมีความสำคัญต่อการดีอียากของผู้ป่วยมะเร็งที่ได้รับเคมีบำบัดยังมีความชัดแจ้ง กันอยู่ และมีหลักฐานที่แสดงว่าการ pragmatics ของสาร P-gp มีสัมพันธ์กับ prognosis ของมะเร็งเต้านมชนิด advanced การศึกษานี้มีจุดประสงค์เพื่อพิสูจน์ว่าระดับการแสดงออกของยีนดีอียาสามารถนำมาใช้เพื่อช่วยการพยากรณ์โรค และการตอบสนองต่อการรักษาด้วยยาเคมีของผู้ป่วยมะเร็งเต้านมได้หรือไม่ โดยใช้เทคนิค RT-PCR-Southern Hybridization ซึ่งมีความไว และความจำเพาะในการตรวจวัดต่ำ พนบว่าในผู้ป่วยมะเร็งเต้านมชนิด primary 127 ราย มีผู้ที่ไม่มีการแสดงออกของยีนดีอียา (mdr1 ลบ) ร้อยละ 63.8 ผู้ที่มีการแสดงออกของยีนนี้ (mdr1 บวก) ในระดับต่ำ (<10 ยูนิต) ร้อยละ 8.7 และระดับสูง (>10 ยูนิต) ร้อยละ 27.5 เมื่อพิจารณาจากปัจจัยต่างๆ เช่น อายุ ภาวะการหมดประจำเดือน ขนาดของก้อนมะเร็ง stage จำนวนของต่อมน้ำเหลืองที่มะเร็งกระจายไปถึง ระดับของ estrogen receptor และระดับของ p53 พนบว่ามีจำนวนของผู้ป่วยที่เป็น mdr1 ลบ และ mdr1 บวก กระจายอยู่ในปริมาณใกล้เคียงกัน อย่างไรก็ได้ทราบว่า การแสดงออกของยีนดีอียามีความสัมพันธ์อย่างมีนัยสำคัญกับจำนวนของต่อมน้ำเหลืองที่มะเร็งกระจายไปถึง และ จำนวนของ estrogen receptor บนผิวของเซลล์มะเร็งน้อยหรือคุณย์ ( $p = .008$  และ  $.0007$  ตามลำดับ) ในกลุ่มผู้ป่วยที่เคยได้รับการรักษาและมีการกลับเป็นของโรคอีก พนบว่าเป็น mdr1 ลบ ร้อยละ 62.5 และ mdr1 บวก ในระดับสูงอย่างเดียว ร้อยละ 37.5 การกระจายของผู้ป่วย mdr1 ลบ และผู้ป่วย mdr1 บวกไม่มีความแตกต่างกัน เช่นเดียวกันในการพิจารณาในทางสถิติเมื่อเปรียบเทียบโดยใช้ปัจจัยต่างๆ แต่ละตัว เช่น อายุ ภาวะการหมดประจำเดือน ขนาดของก้อนมะเร็ง stage จำนวนของต่อมน้ำเหลืองที่มีมะเร็ง ระดับของ estrogen receptor และระดับของ p53 เรานพบว่าการตอบสนองต่อการรักษาด้วยยาเคมีในกลุ่มผู้ป่วย primary และกลุ่มที่กลับเป็นอีกมืออัตรากลไกใกล้เคียงกัน สรุป ผลของการศึกษานี้แสดงให้เห็นว่าสามารถตรวจพนการแสดงออกของยีนดีอียากได้ในเนื้อเยื่อของมะเร็งเต้านมของผู้ป่วยที่ไม่เคยได้รับ หรือ เคยได้รับการบำบัดด้วยยาเคมีมาก่อน การพนความสัมพันธ์ของการแสดงออกของยีนดีอียาก บันปัจจัยที่ช่วยในการพยากรณ์โรค 2 ชนิด คือ จำนวนของต่อมน้ำเหลืองที่มีมะเร็ง และ estrogen receptor ระดับต่ำหรือคุณย์แสดงว่าการ pragmatics ของปัจจัยต่างๆ นี้รวมกันคงมีผลทำให้เซลล์มะเร็งมีพัฒนาการไปในทางที่รุนแรงขึ้น เช่น ดีอียากและมีการพยากรณ์ของโรคไม่ดี การตรวจหาปัจจัยเหล่านี้จะช่วยให้สามารถจำแนกผู้ป่วยที่มีการพยากรณ์โรคที่ไม่ดีได้แน่นอนยิ่งขึ้นเพื่อทำการรักษาอย่าง aggressive ต่อไป อย่างไรก็ได้ในกลุ่มผู้ป่วยมะเร็งเต้านมที่เราทำการศึกษานี้ การ pragmatics ของยีนดีอียามีผลต่อการรักษาด้วยยาเคมี CMF

\* กลุ่มงานวิจัยและค้นคว้า,

\*\* กลุ่มงานเคมีบำบัด, สถาบันมะเร็งแห่งชาติ, กรุงเทพฯ 10400

\*\*\* ภาควิชาพยาธิวิทยา, คณะแพทยศาสตร์ โรงพยาบาลรามาธิบดี, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10400