

Correlation of Serum Lipoprotein(a) with the Clinical Presentation of Thai Coronary Artery Disease Patients

WATTANA LEOWATTANA, M.D.*,
KIERTIJAI BHURIPANYO, M.D.**,
PATAMA WORAWATTANANON, B.Sc*.

NITHI MAHANONDA, M.D.**,
SASIKANT POKUM, B.Sc*,

Abstract

Elevated serum levels of lipoprotein(a) [Lp(a)] confer and increased risk of coronary artery disease (CAD) and have been confirmed as a strong and independent risk factor for this disease. This case-control study was to determine the significance of elevated Lp(a) levels for the existence of CAD by systematically recording cardiovascular risk factors in diagnostic coronary angiography in a group of patients. Two hundred thirty seven consecutive patients (175 men, 62 women, aged 61 ± 10 years) which comprised 24 acute myocardial infarction (AMI), 76 unstable angina (UA) and 137 stable angina (SA) who underwent coronary angiography, were used as cases. One hundred seventy normal healthy volunteers (95 men, 75 women, and aged 58 ± 15 years) were used as controls. Lp(a) concentration were measured by an immunoturbidimetric method (Roche Diagnostics, Switzerland). There was a significant difference between Lp(a) levels in UA compared with the control subjects (44.2 ± 49.0 vs. 27.6 ± 25.3 mg/dL, $p = 0.0006$). When we compared SA and the control group (35.6 ± 31.3 vs. 27.6 ± 25.3 mg/dL, $p = 0.0139$) there was a significant difference between these two groups. UA patients also had a significantly higher prevalence of abnormal Lp(a) (>30 mg/dL) compared with the normal healthy control group (43.2% UA vs. 28.8% control, OR = 1.90, 95%CI = 1.08 – 3.32, $p = 0.0248$). SA patients also had the same finding as UA patients in a higher prevalence of abnormal Lp(a) when compared with the control group (45.2% SA vs. 28.8% control, OR = 2.04, 95%CI = 1.27 – 3.27, $p = 0.0028$). These data further support the role of Lp(a) in atherosclerotic coronary disease and the pathogenesis of acute coronary syndromes.

Key word : Serum Lp(a), CAD, Thailand

**LEOWATTANA W, MAHANONDA N, BHURIPANYO K,
POKUM S, WORAWATTANANON P
J Med Assoc Thai 2000; 83 (Suppl. 2): S194-S198**

* Department of Clinical Pathology,

** Her Majesty Cardiac Center, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

Lipoprotein(a) [Lp(a)] is considered an independent risk factor for premature cardiovascular disease(1). Many prospective and case control studies identified elevated levels of Lp(a) as a factor associated with the development of myocardial infarction and the presence of coronary, carotid and peripheral vascular atherosclerosis(2-4). Lp(a) resembles low density lipoprotein (LDL) in its high cholesterol content and in the presence of 1 molecule of apolipoprotein(apo) B. The additional protein in Lp(a) is called apo(a) and contains a protease domain, a kringle V-like domain, and a variable number of kringle IV repeats, all of which have strong structural homologies to plasminogen(5). The unique structural features of Lp(a) suggest thrombogenic and atherogenic potential, although the precise mechanism of its action is still uncertain. The pathogenesis of unstable angina is mainly related to plaque disruption, which has been associated with the local activity of macrophages(6). An apo(a) portion of unoxidized Lp(a) induces monocytes chemotactic activity in human coronary and umbilical vein endothelial cells(7). Oxidized Lp(a) has been shown to enhance *in vitro* adhesion of human monocytes to cultured endothelial cells. These data indicate that Lp(a) may be an attractant of macrophages in the atheromatous plaque and may lead to progressive luminal obstruction(8). We hypothesized that Lp(a) may be involved in the process of repetitive rupture and healing of the plaque and the development of a totally occluded coronary artery. The present study investigated this hypothesis by evaluating serum Lp(a) levels in patients with unstable and stable angina.

MATERIAL AND METHOD

Patients and angiographical examination

A study population was 237 patients (175 men, 62 women, with mean age 61 ± 10 years) consecutively underwent coronary angiography. These comprised 24 acute myocardial infarction (AMI), 76 unstable angina (UA) and 137 stable angina (SA). Reasons for the examination were the confirmation of clinically suspected coronary artery disease (CAD) with regard to a percutaneous transluminal coronary angioplasty (PTCA) or a surgical coronary intervention, as well as the exclusion of significant CAD in the presence of unclear cardiac symptoms. Two independent experienced researchers using the conventional base of the number of involved vessels

quantified the angiographic findings. One hundred seventy normal healthy volunteers (95 men, 75 women, with mean age 58 ± 15 years) were used as controls. Within the framework of the clinical examination, the patients and the controls were questioned about their family histories. The diagnosis of hypertension was not reached on the basis of sporadically measured blood pressure values, but on the basis of the previous histories, medications and medical records. Likewise, the diagnosis of diabetes mellitus was reached through the evaluation of blood sugar values, daily profiles, the current medication, and the previous histories. Smoking behavior was recorded according to the beginning, the end and the quantity of nicotine consumption.

Measurement of Lipoprotein Levels

Immediately before coronary angiography examinations, blood was taken from the patients after a minimum of 12-h fast for laboratory lipid determination. In controls, blood was also taken after a minimum 12-h fast. Total cholesterol and triglycerides were measured with enzymatic assays and HDL-cholesterol was measured by homogeneous immunoassay (Roche Diagnostics, Switzerland) on a Hitachi autoanalyzer. LDL-cholesterol was calculated with the Friedewald formula. Serum Lp(a) concentrations were measured by the immunoturbidimetric method from Roche Diagnostics, Switzerland.

Statistical Analysis

We used chi-square test and student's *t*-test to evaluate the categorical and continuous variables, respectively. We calculated odds ratios (ORs) plus 95 per cent confidence intervals (CIs) to evaluate the association of AMI, UA and SA with the prevalence of Lp(a) more than 30 mg/dL. EpiInfo software from the Center for Disease and Control (CDC) was used for calculation.

RESULTS

There were no significant differences in demographic, clinical and laboratory values between patients and the control group except patients (AMI, UA and SA) had significantly lower HDL-cholesterol levels than the control group (Table 1). There was a significant trend of increasing Lp(a) levels: 27 mg/dL for the control group, 35 mg/dL for SA and 44 mg/dL for UA, but in AMI the level of Lp(a) was not significantly high when compared with the con-

Table 1. Demographic data of patients and controls.

	AMI (n=24)	UA (n=76)	SA (n=137)	Control (n=170)
Age	61 ± 12.4	62 ± 9.2	61 ± 10.3	58 ± 17.8
Male gender	17(71)	52(68)	106(77)	95(57)
Diabetes mellitus	12(50)	32(42)	53(39)	48(28)
Hypertension	11(46)	36(47)	74(54)	52(31)
Smoking	10(42)	43(45)	61(45)	73(49)
Total cholesterol (mg/dL)	201 ± 52	216 ± 52	207 ± 45	213 ± 43
Triglycerides (mg/dL)	130 ± 42	159 ± 76	154 ± 81	170 ± 108
HDL-C (mg/dL)	34 ± 9*§	39 ± 11 §	40 ± 10 *§	46 ± 11 §
LDL-C (mg/dL)	140 ± 47	144 ± 45 *	135 ± 39	133 ± 41 *
Lp(a) (mg/dL)	29 ± 26	44 ± 49 ¶	35 ± 31 *	27 ± 25 *¶

* p < 0.05; ¶ p < 0.005; § p < 0.0001

Table 2. The odd ratio and 95% confidence interval of AMI, UA and SA compared with control when Lp(a) level more than 30 mg/dL.

	N (%)	Lp(a) > 30 mg/dL	p value
		OR (95% CI)	
AMI	8/21 (33)	1.65 (0.65 – 4.31)	NS
UA	33/76 (43)	1.90 (1.08 – 3.32)	0.0248
SA	62/137 (45)	2.04 (1.27 – 3.27)	0.0028
Control	49/170 (29)	1	-

Table 3. The odd ratio and 95% confidence interval of one vessel disease compared with two vessel and three vessel disease when Lp(a) level more than 30 mg/dL.

	N (%)	Lp(a) > 30 mg/dL	p value
		OR (95% CI)	
One vessel	40/80 (50)	1.45 (0.72 – 2.92)	NS
Two vessels	22/52 (42)	1.07 (0.55 – 2.10)	NS
Three vessels	41/105 (39)	1.56 (0.87 – 2.81)	NS

trol. UA and SA patients had a significantly higher prevalence of abnormal Lp(a) (> 30 mg/dL) compared with the control group (Table 2). The OR of UA compared with the control was 1.90 and 95% CI = 1.08 – 3.32, p = 0.0248 and the OR of SA compared with the control group was 2.04 and 95% CI = 1.27 – 3.27, p = 0.0028. In the case of AMI there were no significant differences when compared with the control group, OR = 1.65 and 95% CI = 0.65 – 4.31, p > 0.05. A total of 237 CAD patients consisted of 80 patients with one-vessel disease, 52

patients with two-vessel disease and 105 patients with three-vessel disease. The prevalence of Lp(a) more than 30 mg/dL in one-, two- and three-vessel disease are shown in Table 3. There was no significant difference between these groups.

DISCUSSION

The aim of the present study is to report an association between Lp(a) and clinical presentation or the severity of CAD by related to the number of disease vessels. This role of Lp(a) in the develop-

ment of occluded arteries was implied previously by the association of elevated serum Lp(a) with rapid angiographic progression of coronary disease (9). The mechanism of coronary atherosclerosis and occlusion was the incorporation of mural thrombus into the arterial wall leading to increasing luminal obstruction(10). The authors did not document increased serum Lp(a) in patients with single-vessel disease compared with those with two- or three-vessel disease, like some studies and unlike other studies(11,12).

The association of Lp(a) with the clinical syndrome of UA and SA provides additional support for the role of Lp(a) in plaque disruption and intracoronary thrombosis. Dangas G et al previously reported the presence of Lp(a) in human coronary atheroma(12). Lp(a) was found in greater distribution in plaques of patients with unstable compared with stable angina. Our present data demonstrated the association between serum Lp(a) levels and clinical presentation of CAD as previously reported by other investigators(11,13).

(Received for publication on October 11, 2000)

REFERENCES

1. Dahlen GH. Lp(a) lipoprotein in cardiovascular disease. *Atherosclerosis* 1994; 108: 111-26.
2. Rhoads GG, Dahlen GH, Berg K, et al. Lp(a) lipoprotein as a risk factor for myocardial infarction. *JAMA* 1986; 256: 2540-4.
3. Willeit J, Kiechl S, Santer P, et al. Lipoprotein(a) and asymptomatic carotid artery disease; evidence of a prominent role in the evolution of advanced carotid plaques: the Bruneck study. *Stroke* 1995; 26: 1582-7.
4. Norrgard O, Angquist KA, Dahlen GH. Lp(a) lipoprotein in patients with arterial insufficiency of the lower extremities. *Eur J Vasc Surg* 1991; 5: 277-82.
5. Haijar KA, Nachman RL. The role of lipoprotein(a) in atherogenesis and thrombosis. *Annu Rev Med* 1996; 47: 423-42.
6. Morenu PR, Falk E, Palacios IF, et al. Macrophage infiltration in acute coronary syndromes: implication for plaque rupture. *Circulation* 1994; 90: 2844-50.
7. Poon M, Zhang X, Dunsky K, et al. Apolipoprotein (a) induces monocyte chemotactic activity in human vascular endothelial cells. *Circulation* 1997; 96: 2514-9.
8. Grainger DJ, Kirschenlohr HL, Metcalfe JC, et al. Proliferation of human smooth muscle cells promoted by lipoprotein(a). *Science* 1993; 260: 1655-8.
9. Terres W, Tatsis E, Pfalzer B, et al. Rapid angiographic progression of coronary artery disease in patients with elevated lipoprotein(a). *Circulation* 1995; 91: 948-50.
10. Fuster V, Badim L, Badim JJ, et al. The pathogenesis of coronary disease and the acute coronary syndromes. *N Engl J Med* 1992; 326: 242-50.
11. Dangas G, Ambrose JA, D'Agate DJ, et al. Correlation of serum lipoprotein(a) with the angiographic and clinical presentation of coronary artery disease. *Am J Cardiol* 1999; 83: 583-5.
12. Dangas G, Meharan R, Harpel PC, et al. Lipoprotein(a) and inflammation in human coronary atheroma: Association with the severity of clinical presentation. *Atherosclerosis* 1998; 32: 2035-42.
13. Dahlen GH, Guyton JR, Attar M, et al. Association of levels of lipoprotein Lp(a), plasma lipids and other lipoproteins with coronary artery disease documented by angiography. *Circulation* 1986; 74: 758-65.

ความสัมพันธ์ระหว่างระดับชั้รัมໄลໂປໂປຣຕິນ(ເອ) ກັບໝັດຂອງຜູ້ປ່າຍໂຮກຫລວດເລືອດ-ແດງໂຄໂຣນາຢີໃນປະເທດໄທ

ວັດນາ ເລື່ຍວັດນາ, ພ.ບ.*, ນິທີ ນາກນັກ, ພ.ບ.**, ເກີຍຕີ້ຫ້ຍ ກົງປັນໂຄ, ພ.ບ.**,
ສະກິການຕີ ໂພອີ້ຄໍາ, ວ.ກບ.*, ປັກນາ ວົງວັດນານັກ, ວ.ກບ.*

ການເພີ່ມສູງຂຶ້ນຂອງຮະດັບໜັກໄລໂປໂປຣຕິນ(ເອ) ທ່ານໃຫ້ດ້ວຍເລື່ອງໃນການເກີດໂຮກຫລວດເລືອດແດງໂຄໂຣນາຢີເພີ່ມຂຶ້ນແລະ
ກີວີເວົ້າເປັນປັຈຍເສີ່ງອົສະຫະຂອງໂຮກນີ້ ສໍາຫວັບປະເທດໄທຂໍ້ມູລດ້ານນີ້ຍັງມີການສຶກສານ້ອຍມາກ ດະຜະຜູ້ວິຈີຍຈຶ່ງທຳການ
ສຶກສາຄົງຄວາມລັ້ມພັນຮ່ວ່າງຮະດັບໜັກໄລໂປໂປຣຕິນ(ເອ)ກັບຜູ້ປ່າຍໂຮກຫລວດເລືອດແດງໂຄໂຣນາຢີນິດຕ່າງໆ ຮ່ວມ 237 ຮາຍ
(ຜູ້ຍ້າ 175 ຮາຍ, ຜູ້ຍຸງ 62 ຮາຍ, ອາຍຸເຊີ່ຍ 61 \pm 10 ປີ) ທ່ານທີ່ກີວີເວົ້າເປັນປັຈຍເສີ່ງອົສະຫະຂອງໂຮກນີ້ 24 ຮາຍ ຜູ້ປ່າຍເຈັບໜັກແບບໄມ່ເສັດີຍ 76 ຮາຍ ແລະຜູ້ປ່າຍ
ເຈັບໜັກແບບເສັດີຍ 137 ຮາຍ ເບີຍບໍ່ເຫັນກັບຄົນປົກຕິຈຳນົວ 170 ຮາຍ (ຜູ້ຍ້າ 95 ຮາຍ, ຜູ້ຍຸງ 75 ຮາຍ, ອາຍຸເຊີ່ຍ 58 \pm
15 ປີ) ການຕຽບຈັດຮະດັບໜັກໄລໂປໂປຣຕິນ(ເອ) ທ່ານໄດ້ວິວເອີມມູນເກວບດິມເຕີກ (ໂຮງໄດ້ແກອນໂລສຕິກິລີ, ລວັດເຊື່ອແລນດ) ພບວ່າ
ຮະດັບຂອງໜັກໄລໂປໂປຣຕິນ(ເອ)ໃນຜູ້ປ່າຍເຈັບໜັກແບບໄມ່ເສັດີຍມີຄ່າສູງກວ່າໃນຄົນປົກຕິອ່າຍ່າມນັ້ນຢ່າຄັງທາງສົດິ (44.2 \pm
49.0 ກັບ 27.6 \pm 25.3 ມກ/ດລ, ພ = 0.0006) ໃນຜູ້ປ່າຍທີ່ມີການເຈັບໜັກແບບເສັດີຍປົກປະວ່າຮະດັບໜັກໄລໂປໂປຣຕິນ(ເອ)
ມີຄ່າສູງກວ່າໃນກຸ່ມຄົນປົກຕິອ່າຍ່າມນັ້ນຢ່າຄັງທາງສົດິໃຫ້ກັນ (35.6 \pm 31.3 ກັບ 27.6 \pm 25.3 ມກ/ດລ, ພ = 0.0139) ເມື່ອລອງ
ທາອຸນດັກຮ່ານຂອງການມີຮະດັບໜັກໄລໂປໂປຣຕິນ(ເອ)ສູງກວ່າ 30 ມກ/ດລ ໃນຜູ້ປ່າຍເຈັບໜັກແບບໄມ່ເສັດີຍເຫັນກັບໃນກຸ່ມ
ອາສາມຄວາມສຸຂພາດຕື່ພນວ່າອຸນດັກຮ່ານຂອງການມີຮະດັບໜັກໄລໂປໂປຣຕິນ(ເອ)ສູງກວ່າ 30 ມກ/ດລ ມີສູງກວ່າອ່າຍ່າມນັ້ນຢ່າຄັງ
ທາງສົດິ (43.2% ກັບ 28.8%, OR = 1.90, 95%CI = 1.08 – 3.32, ພ = 0.0248) ປະກາງກາຮົນນີ້ປັບເໜີເຫັນໃນຜູ້ປ່າຍ
ເຈັບໜັກແບບເສັດີຍໂດຍພບອຸນດັກຮ່ານ 45.2% ເຫັນກັບຄົນປົກຕິ ຜົ່ງປັບເພີ່ມ 28.8% (OR = 2.04, 95%CI = 1.27 –
3.27, ພ = 0.0028) ໂດຍສຽງຄະຜູ້ວິຈີຍທີ່ຂ່ອງວ່າໄລໂປໂປຣຕິນ(ເອ)ນໍາຈະມີສ່ວນໃນການເກີດກວາວ່າຫລວດເລືອດແໜ້ງຕັ້ງແລະນໍາໄປ
ສູ່ການເກີດໂຮກຫລວດເລືອດແດງໂຄໂຣນາຢີໃນສຸດໜີ້ແປ່ນປັງທາກທີ່ພບນໍ້ອຍໃນປະເທດໄທເຫັນເຫັນໃນປະເທດທາງຕະວັນຕົກ

ຄໍາສໍາຄັນ : ໜັກໄລໂປໂປຣຕິນ(ເອ), ໂຮກຫລວດເລືອດແດງໂຄໂຣນາຢີ, ປະເທດໄທ

ວັດນາ ເລື່ຍວັດນາ, ນິທີ ນາກນັກ, ເກີຍຕີ້ຫ້ຍ ກົງປັນໂຄ, ສະກິການຕີ ໂພອີ້ຄໍາ, ປັກນາ ວົງວັດນານັກ
ຈົດໜາຍເຫດກາງແພທ໌ ໨ 2543; 83 (ຍັນປີເກີດ 2): S194–S198

* ການວິຊາພາຫວີທາຄລິນິກ,

** ສ້າງກົງຈາກສູນຢ່າໂຮກທີ່ໄວ້ໃນສົມເຕີ່ງພະບາຍໃນນາຄາ, ດະແຫຼາມສາສົດຮ່ວມມືກິຈາກພາບາລ, ມາຮັກຍາລ້ຽມທິດລ, ກຽມທັກ 10700