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Background: RBE is known as nutritious bioactive compounds and is proven to decrease blood lipids, hepatic fat accumulation
and oxidative damage. However, the molecular mechanisms of protective effect of RBE has not been clarified.

Objective: To investigate the effect and mechanism of RBE on hepatic lipid accumulation and lipid oxidative damage in rats
fed a high-fat diet (HFD).

Material and Method: Male Sprague-Dawley rats were divided into four groups including 1) control group (C), 2) high-fat
diet fed only group (HF), 3) HF co-fed with RBE at the dose of 2,205 mg/kg/day (HFR1 group) and 4) HF co-fed with RBE at
the dose of 4,410 mg/kg/day (HFR2 group), respectively. After four weeks, body weight, metabolic and oxidative damage
markers were assessed.

Results: Body weight, abdominal fat tissue weight, liver weight, and serum lipid levels were reduced in RBE-treated rats
compared to HFD alone-fed rats. RBE-fed groups showed significantly lower levels of total-cholesterol, triglyceride and
malondialdehyde in the liver tissue. RBE also inhibited hepatic 3-hydroxy-3 methylglutaryl coenzyme A reductase (HMGCR)
activity, suppressed expression of hepatic sterol regulatory element binding protein-1 (SREBP-1) and nuclear factor kappa B
(NF-kappa B), and up-regulated hepatic adenosine monophosphate-activated protein kinase (AMPK) expression.
Conclusion: RBE improves hepatic fat accumulation via the regulation of SREBP-1, AMPK expression and HMGCR activity
in HFD induced obese rats. RBE also attenuates the damaging effects of oxidative stress by decreasing lipid peroxidation and
NF-kappa B expression in the liver. Thus, RBE may be useful in the management of dyslipidemia and oxidative stress at the

onset of obesity.
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Non-alcoholic fatty liver disease (NAFLD),
an excessive triglyceride accumulation within lipid
droplets in hepatocytes, is currently the most common
chronic liver disease in many countries that may
progress to severe liver disease®. It is strongly
associated with obesity, high-energy diet consumption,
and type 2 diabetes®®. De novo lipogenesis can
promote triglyceride (TG) accumulation in the liver via
the activation of the sterol regulatory element binding
protein-1c (SREBP-1c), the key lipogenic transcription
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factor®9. The increase of de novo cholesterol
biosynthesis by stimulation of 3-hydroxy-3 methyl-
glutaryl coenzyme A reductase (HMGCR) has
been proposed to be a main mechanism for the
cholesterol over accumulation in the liver and is
now also considered as an important characteristic
of NAFLD and non-alcoholic steatohepatitis
(NASH)®®, On the contrary, Li et al found that
activation of adenosine monophosphate-activated
protein kinase (AMPK) suppresses SREBP-2 pathway
and SREBP-2 target gene expression, such as the
HMGCR gene which is essential for controlling hepatic
cholesterogenesis®.

In addition, malondialdehyde (MDA) was
observed in the livers of animals and patients with
NAFLD demonstrating the role of oxidative stress
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causing lipid peroxidation which lead to hepatic
inflammation and the progression of NAFLD to
NASH@-12 Moreover, the oxidative stress in
hepatocytes and the expression of pro-inflammatory
genes, such as tumor necrosis factor-alpha (TNF-alpha)
can be promoted by activation of nuclear factor-kappa
B (NF-kappa B)®213),

Rice bran is an important by-product of rice
milling and has phytochemicals and various nutrients.
Recent findings show that rice bran improves lipid
and glucose metabolism in patients with diabetes
mellitus and also decreases oxidative stress in patients
and rats with metabolic syndrome®+19, However, its
exact molecular mechanism is not fully understood.
Therefore, the present study was performed to
investigate the effects of RBE on hepatic fat mechanism
and on hepatic oxidative damage.

Material and Method
RBE preparation

Organic rice bran of Khao Dawk Mali 105
(KDML 105) variety was obtained from the local mill in
Surin province, Thailand. Rice bran was extracted as
previously described with some modifications®®. The
2,000 g of stabilized rice bran was extracted with 8,000
mL of distilled water at 70°C for 1 h. After centrifugation
at 12,000 xg for 10 min, the supernatant was freeze-
dried by using a freeze dryer (Lyophilization System
Inc., USA).

Animal study

All experimental procedures involving animals
were conducted in accordance to Association for
Assessment and Accreditation of Laboratory Animal
Care (AAALAC) and approved by the Animal Ethics
Committee of the Faculty of Medicine, Thammasat
University, Pathumthani, Thailand (AE 002/2013).
Thirty-two male outbred Sprague-Dawley rats, 6 to 8
week old and initial weight about 180 to 220 g were
purchased from the National Laboratory Animal Center,
Nakhon Pathom, Thailand. Animals were kept on 12: 12
hour light/darkness cycle under environmentally
regulated room temperature at 24+1°C and 60%
humidity. Rats were singly caged with free access to
water and controlled to different dietary regimens. High-
fat diet (HFD) were modified from previous report®".
After seven days of acclimatization, the rats had free
access to a standard chow (C group, fat content 13%
of energy, n = 8) or HFD alone (HF group, fat content
65% of energy, n = 8) or HFD and co-fed with RBE1
(2,205 mg/kg rat weight, HFR1 group, n =8) or HFD and
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co-fed with RBE2 (4,410 mg/kg rat weight, HFR2 group,
n = 8). Weight and food intake were monitored once
a day. After four weeks, the rats were killed after 16 h
overnight fast with an overdose of pentobarbital
sodium (intra-peritoneal injection), and blood was
collected from a cardiac puncture and serum was
prepared and stored at -40°C until further analysis.
The liver tissues were removed for the biochemical,
histologic, and gene expression analysis as described
below.

Determination of serum lipid levels

The concentrations of total-C, TG and high-
density lipoprotein-cholesterol (HDL-C) in the serum
were analyzed using enzymatic colorimetric method
(Fluitest test kits, Analyticon Biotechnologies AG,
Germany). Serum low-density lipoprotein-cholesterol
(LDL-C) level was determined using the Friedewald
equation. The concentrations of non-esterified fatty
acid (NEFA) were measured using the enzymatic
colorimetric method (NEFA assay kit, Wako, Japan).

Determination of liver total-C and TG contents
Liver lipids were determined as described
previously®®. In brief, 50 mg of liver tissue was
homogenized and extracted with 1 mL of isopropanol.
After centrifugation (10,000 xg for 15 min at 4°C),
total-C and TG contents in the supernatant were
determined using the enzymatic colorimetric method
(Analyticon Biotechnologies AG, Germany).

The histology of epididymal fat pads and liver tissues

For histologic examination, tissue pieces of
epididymal fat pads and right ventral lobe of liver tissues
were fixed in 10% neutral buffered formaldehyde,
embedded in paraffin, cut, mounted on slides and
stained according to standard hematoxylin and eosin
(H and E) protocols. The histological changes were
imaged under a light microscope (Olympus, Japan). Area
of the adipocyte was measured by Axiovision AC (Carl
Zeiss, Germany). Mean adipocyte area was calculated
from a 100 cells observed/um?.

Determination of HMGCR activities in the liver
One gram of liver tissue was homogenized
and centrifuged at 100,000 xg for 60 min at 4°C
for microsomal fraction sedimentation. The microsomes
were prepared from freshly liver tissues as described
previously®. The protein concentrations of the
fractions were determined with Folin phenol reagent.
The HMGCR activities were measured with a
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commercial kit from Sigma-aldrich, USA and expressed
as mmol/min/mg protein (Units/mg protein).

Determination of liver oxidative stress markers

MDA levels were used for representative of
reactive oxygen species (ROS)-mediated damage. An
assay was measured spectrophotometrically at 532 nm
as described previously with some modifications®,
The total protein levels of liver tissues were used for
normalization and using 1, 1, 3, 3-tetraethoxypropane
(Sigma-Aldrich) as an MDA standard. The total
proteins were determined by Bradford protein assay
kit (Bio-Rad, USA) according to the manufacturer’s
instructions. The MDA levels were expressed as nmol/
mg of protein.

Liver mRNA extraction, cDNA synthesis, and real-
time polymerase chain reaction (real-time PCR)
Total RNA was extracted from liver
tissues using TRIzol reagent (Invitrogen, USA),
according to the manufacturer’s recommendations. Its
concentrations were determined by the NanoDrop
spectrophotometer (Thermo Scientific, USA).
Subsequently, RNA (200 ng) was reverse transcribed
into cDNA using the High-capacity cDNA reverse
transcription kit (Applied Biosystems, USA) according
to the manufacturer’s instructions. Quantitative PCR
was perfumed using the TagMan reagent kit and
StepOnePlus real-time PCR system (Applied
Biosystems). The relative mRNA levels of SREBP-1c
(Assay ID Rn01495769_m1), and NF kappa B p65
(Assay ID Rn01502266_m1) were analyzed by the
2-AACT method. The expression levels of GAPDH
(Assay ID Rn99999916_s1) were used for normalization.

Western blot analysis

The total protein of the liver tissues was
isolated using the cell lysis buffer (Cell Signaling
Technology, USA) according to the manufacturer’s
instructions. The extracted total protein concentrations
were determined by Bradford protein assay kit (Bio-
Rad). Equal amounts of sample proteins (50 ug) were
electrophoresed on 7% sodium dodecyl sulfatepolya-
crylamide gel and electroblotted to nitrocellulose
membrane (Bio-Rad). The membranes were blocked by
a mixture of Odyssey blocking buffer (LI-COR
Bioscience, USA) in the dark at room temperature for 1
h. The blocked membranes were then incubated with a
primary anti-SREBP-1 antibody, anti-AMPK alpha Santa
Cruz Biotechnology, USA), anti-NF-kappa B p65
antibody, and anti-GAPDH antibody (Cell Signaling
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Technology) overnight at 4°C. The membranes were
washed with Tris-buffer saline containing 0.1%
Tween-20 and incubated with the DyLight 680
conjugated antibodies (Cell Signaling Technology)
for 1 h in the dark at room temperature. After washing,
the densities of bands were determined using the
Odyssey Fc imaging system (L1-COR Bioscience). The
protein levels of GAPDH were used for normalization.

Statistical analysis

The results were expressed as means + the
standard error of the mean (SEM). Multiple comparisons
were analyzed by one way analysis of variance
(ANOVA) and least significant difference’s (LSD) post
hoc test. The statistical analysis was performed
using computer-based software SPSS version 16 (SPSS
Inc., USA). The level of statistical significance was
identically set at p<0.05.

Results
Effects of RBE on HFD-induced changes in body
weight, organ weight, and histology of epididymal
fat tissue and liver tissue

The average initial body weight of each group
did not differ prior to treatment. Food and energy
intakes were not significantly different among the HF-
fed groups (Fig. LAand B, respectively). However, the
energy intakes were significantly higher in all HF groups
as compared to the C group. After four weeks, the HF
group had a higher final body weight, adipocyte size,
relative weights of omental fat tissue, epididymal fat
tissue, and liver than those of the C group (Fig. 1C, 2C,
2A, 2B, and 2D, respectively). As illustrated in Fig. 2E
and F, sections from the HF-fed animals showed a
marked hypertrophied adipocyte and hepatocyte lipid
vacuoles (arrow) when compared to the C group and
RBE-treated groups. These parameters (body weight,
organ weight and histology of epididymal fat tissue
and liver tissue) were significantly reduced by the RBE
treatments.

Effects of RBE on HFD-induced TG over accumu-
lation in the liver

Compared with the controls, the rats fed an
HFD only exhibited a marked increase in liver TG
contents and SREBP-1 expression levels, whereas the
AMPK alpha protein levels had decreased in the liver
(Fig. 3A, C, D, and B, respectively). In contrast to the
HF group, both RBE1 and RBE2 treatments significantly
improved the contents of liver TG and SREBP-1 and
AMPK alpha expression levels.
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Fig. 1  Effect of RBE on food intake (A), energy intake (B), and final body weight (C) in HFD-fed rats results are
expressed as mean + SEM (n = 8) *** p<0.001 versus C group; **# p<0.001 versus HF group.
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Fig. 2  Effect of RBE on omental fat tissue weight (A), epididymal fat tissue weight (B), epididymal adipocyete size (C),
liver weight (D), and histology of epididymal fat tissue (E) and liver (F) (H and E, 400x; scale bar = 100 um) in
HFD-fed rats.
BW = body weight; Results are expressed as mean + SEM, (n = 8 for organ weight and n = 3 for histological
analysis). ** p<0.01, *** p<0.001 versus C group; # p<0.05, # p<0.01, *# p<0.001 versus HF group.
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Fig. 3  Effect of RBE on TG contents (A), AMPK alpha protein expression (B), SREBP-1c mRNA expression (C), and
SREBP-1 protein expression (D) in the livers of HFD-fed rats results are expressed as mean + SEM (n=8 for TG
assay and n = 6 for gene expression). * p<0.05, ** p<0.01, *** p<0.001 versus C group; # p<0.05, ## p<0.001
versus HF group.
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Fig. 4  Effect of RBE on total-C contents (A) and HMGCR activities (B) in the livers of HFD-fed rats. Results are
expressed as mean + SEM (n = 8 for cholesterol assay and n = 3 for HMGCR activities). * p<0.05, *** p<0.001
versus C group; # p<0.01, #* p<0.001 versus HF group.
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Effect of RBE on MDA levels (A), and NF-kappa B p65 mRNA expression (B), and NF-kappa B p65 protein

expression (C) in the livers of HFD-fed rats. Results are expressed as mean + SEM, (n = 8 for MDA assay and
n = 6 for gene expression). *** p<0.001 versus C group; * p<0.05, * p<0.01, *# p<0.001 versus HF group.

Effects of RBE on HFD-induced cholesterol over
accumulation in the liver

The total-C levels and HMGCR activity were
significantly higher in the livers of rats fed an HFD as
compared to control group (Fig. 4A and B, respectively).
However, supplements with both doses of RBE showed
significantly decreased the cholesterol accumulation
and HMGCR activity in the livers of the rats.
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Effects of RBE on HFD induced-oxidative damage
and NF-kappaB p65 expression in the liver

The HF group showed a significant increase
in liver MDA levels as compared to control group
(Fig. 6A). Both the HFR1 and the HFR2 groups showed
asignificant reduction in the levels of MDA in the liver.
The hepatic tissues from the HF group, when compared
with the C group, showed a significant increase in
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the mRNA levels and tended to have increased levels
of the protein NF-kappa B p65 (Fig. 6B and C,
respectively). HFR1 group showed a significant
decrease in the mRNA levels whereas the HFR2 group
showed significant decrease in the protein levels of
NF-kappa B p65.

Discussion

The present study examined the protective
effect of RBE from Khao Dawk Mali variety on hepatic
lipid accumulation and lipid oxidative damage in rats
fed a high-fat diet (HFD). Our results found that high
fat diet developed visceral obesity, dyslipidemia,
hepatic fat accumulation, lipid oxidative damage and
altered NF-kappa B expression in liver tissue. Rice bran
water extract ingestion caused a significant decrease
in body weight and intra-abdominal fat deposition,
serum levels of total-C and NEFA without affecting the
serum LDL-C, TG and HDL-C levels which are similar
to the previous observation®®. RBE improved hepatic
fat accumulation and also attenuated the damaging
effects of oxidative stress.

The mechanism of NAFLD remains largely
unknown. The present study is consistent with the
earlier study revealed that it is associated with
obesity and high fat diet ingestion®®, NAFLD is
characterized by abnormal lipid metabolism in the liver,
including elevated de novo lipogenesis, increased
cholesterogenesis, or decreased fat oxidation leading
to dyslipidemia®24%), Metabolic stimuli, including
hyperinsulinemia, hyperglycemia, and high NEFA
levels, stimulate TG synthesis in the liver via activation
of various lipogenic transcription factors, such as
SREBP-1c “9. It is now recognized that SREBP-1c plays
aprimary regulatory role via its capacity to up-regulate
a number of lipogenic enzymes, such as fatty acid
synthase (FAS) and acetyl-CoA carboxylase (ACC). In
addition, the activation of HMGCR is an essential
regulatory step in the de novo synthesis of cholesterol.
Previous studies reported that increased HMGCR
activity and expression have led to hepatic cholesterol
over accumulation in humans and rodents with MS(#),
AMPK regulates lipogenesis and cholesterogenesis
by inactivating SREBP-1c and HMGCR pathways,
respectively and also inhibits the activities of ACC,
further leading to FA oxidation®. The impairment of
AMPK activation has been observed in the livers of
rodents with MS and NAFLD, suggesting that
stimulation of the AMPK pathway could represent a
possible mechanism to prevent hepatic fat
accumulation®. In the present study, rats fed an HFD
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only exhibited abdominal obesity, excessive
accumulation of TG and total-C in the liver and
hyperlipidemia. These findings were associated with
an increased expression of SREBP-1 and activity of
HMGCR, but down-regulated protein expression of
AMPKalpha in the livers. Our present data are
concordant with those of previous studies®”2Y. Along
with the decrease in obesity and hyperlipidemia,
treatment of HF-fed rats with RBE effectively decreased
intracellular lipid vacuoles, as well as the levels of
TG and total-C in the livers. These were accompanied
by improving HMGCR activity, and the expression of
SREBP-1 and AMPK alpha genes. Thus, present
findings suggest that RBE suppresses hepatic fat
synthesis, thereby reduces the hypercholesterolemia
and hypertriglyceridemia under diet-induced obesity
conditions. These are similar to those obtained by
Wang et al®®, who reported that an inhibition of hepatic
HMGCR activity by treatment with aqueous enzymatic
extract from rice bran may be beneficial in the
improvement of dyslipidemia in high-energy diet-fed
rats. Furthermore, Boonloh et al®? showed that KDML
105 rice bran protein decreased the expression of
lipogenic genes SREBP-1 and FAS in the liver tissues
of high-energy diet-fed rats.

The present study found that HF-fed rats
treated with RBE showed a significant decrease in MDA
levels when compared with the HFD-only rats. We also
found that the RBE treatment could decrease the
expression of hepatic NF-kappa B p65. A recent study
revealed that treatment with NF-kappa B inhibitor was
found to attenuate the increase in oxidative stress and
formation of MDA in the hepatocytes®®. Thus, the
anti-oxidative damage activity of RBE is believed to be
a result of the inhibition of the NF-kappa B p65 gene
expression. However, further studies are needed to
examine the antioxidant mechanisms of RBE. In
accordance with our results, previous study has
revealed that decreased levels of MDA in the plasma
and erythrocytes of mice fed rice bran and phytic
acid®. Moreover, the plasma levels of oxidative
damage markers, including MDA and protein carbonyl,
in hypertensive rats were significantly reduced by
treatment with KDML 105 rice bran peptides®?.

Conclusion

The results of this study indicate that RBE
form KDML 105 has a lipid lowering effect by inhibiting
hepatic TG and cholesterol synthesis through the
regulation of SREBP-1c and AMPK alpha expressions,
and HMGCR activity in HFD-induced obese rats. In
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addition, RBE may also attenuate the damaging effects
of oxidative stress by decreasing lipid peroxidation and
NF-kappa B expression in the liver. Thus, RBE may be
useful in the management of hepatic fat metabolism
and oxidative stress at the onset of obesity. Further
studies will be needed to examine the bioactive
constituents of RBE.

What is already known on this topics?

Rice bran water extract (RBE) from Khao Dawk
Mali 105: KDML 105) (Oryza sativa Linn) decreased
blood TG level and abdominal fat weight, improved
pre-diabetic state, reduced fat cell size and liver
steatosis in rats fed with high fat diet (HF). Also, RBE
had antihyperlipidemic and antioxidant effect in animal
model. Though many health benefits have been found
from rice bran, little is known about the effect of RBE
on the hepatic fat metabolism and oxidative damage.

What this study adds?

To our knowledge, this is the first report which
aims to find the mechanism at the molecular level of
RBE in the improvement of fat accumulation and lipid
oxidative damage in liver of rat fed a high fat diet at the
onset of obesity.
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