

Antispasmodic Effects of Curcuminoids on Isolated Guinea-Pig Ileum and Rat Uterus

CHANDHANEE ITTHIPANICHPONG, MSc*,
WANDEE KEMSRI, BSc*,

NIJSIRI RUANGRUNGSI, PhD**,
ANUGOOL SAWASDIPANICH, MSc*

Abstract

Curcuminoids, a yellow constituent isolated from *Curcuma longa* Linn. rhizomes was studied for its antispasmodic activity in isolated guinea-pig ileum and rat uterus. Curcuminoids at the concentration of 12 μ g/ml significantly inhibited the ileum pre-contracted with acetylcholine (ACh) 5×10^{-7} M and histamine 5×10^{-7} M. (Force of contraction was $62.84 \pm 4.66\%$ and $75.60 \pm 4.66\%$ respectively) and the effects were prominently observed when the concentration of curcuminoids was increased to 36 μ g/ml. (Force of contraction was $44.93 \pm 4.33\%$ and $42.79 \pm 1.98\%$) In potassium depolarizing Tyrode solution, curcuminoids 4 μ g/ml and 20 μ g/ml reduced the contraction induced by calcium chloride ($CaCl_2$) 1.8 mM. (The contraction was $63.31 \pm 1.80\%$ and $36.87 \pm 3.25\%$) In rat uterus smooth muscle preparation, curcuminoids 8 μ g/ml and 16 μ g/ml significantly reduced force and frequency of contraction induced by oxytocin 1×10^{-2} IU/ml. Curcuminoids 8 μ g/ml produced 54.68 ± 3.34 per cent force of contraction and 79.09 ± 2.29 per cent frequency of contraction. Curcuminoids 16 μ g/ml caused more relaxation of rat uterus smooth muscle. (Force of contraction was $43.38 \pm 3.56\%$, frequency of contraction was $49.96 \pm 5.20\%$). Curcuminoids 8 and 16 μ g/ml significantly reduced force of contraction induced by KCl 50 mM. (Force of contraction was $54.10 \pm 4.92\%$ and $36.60 \pm 2.99\%$). The results obtained from this study concluded that curcuminoids produced a smooth muscle relaxation effect on isolated guinea-pig ileum and rat uterus by receptor-dependent and independent mechanism.

Key word : Curcuminoids, Antispasmodic, Turmeric

ITTHIPANICHPONG C, RUANGRUNGSI N,
KEMSRI W, SAWASDIPANICH A
J Med Assoc Thai 2003; 86 (Suppl 2): S299-S309

* Department of Pharmacology, Faculty of Medicine,

** Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

Turmeric rhizomes (*Curcuma longa* Linn Family Zingiberaceae) is known very well as "Kamin" in Thailand. It is widely used as a spice, coloring agent in several kinds of foods, such as curry and mustard. Insect-repellant, cosmetic and medical purposes are other uses of it⁽¹⁻⁴⁾. In Thai folk remedies (5), Kamin is employed as a carminative, an anti-inflammatory substance. It is also used in the treatment of menstrual difficulty, hepatic disorder as well as biliary disorder. Active constituents of turmeric compose of curcuminoids which are yellow pigment accumulated in the parenchymal cells of cortex in turmeric rhizomes. There are 3 principle components in curcuminoids from turmeric: curcumin, demethoxycurcumin and bisdemethoxycurcumin as demonstrated in Fig. 1.

In vivo and *in vitro* evaluation of *Curcuma longa* L. revealed a variety of pharmacological actions including : scavenging of reactive oxygen species^(6, 7), cancer chemoprevention⁽⁸⁻¹⁰⁾, anti-inflammation (11,12), antiprotozoal activity^(13,14), antibacterial activity⁽¹⁵⁾, anti HIV effect⁽¹⁶⁾ and antipeptic ulcer agents^(17,18).

Even though advanced research of curcumin is evident, it is still essential to elucidate some important pharmacological aspects of this substance since it is commonly used in daily food. The present study aimed at evaluating the antispasmodic and relaxant effects of curcuminoids on isolated guinea-pig ileum and rat uterus.

MATERIAL AND METHOD

Plant material

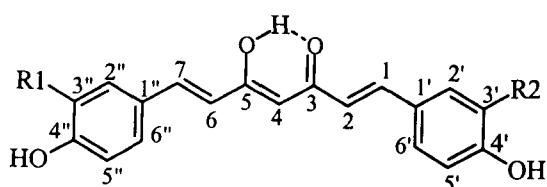
The dried rhizome of turmeric (*Curcuma longa* Linn) was collected in Nakhon Pathom province. A voucher specimen of the plant material was deposited at the herbarium of the Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok Thailand.

Animals

Female wistar rats (200 g) and both sexes of guinea pigs were purchased from the National Laboratory Center, Salaya, Mahidol University, Nakhon Pathom province. All animals were kept in an air conditioned room at the Animal Facility Center of the Faculty. They were acclimatized for at least 1 week before beginning the experiment and fed with a standard diet (Zuellig Co). Water was allowed ad libitum.

Chemicals

Acetylcholine hydrochloride, histamine base, ethylene glycol bis (β-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) were obtained from Sigma Chemical Co, St.Louis USA. Oxytocin (syntocinon®) was purchased from Sandoz, Switzerland, Estradiol valerate (Progynon Depot®) was from Schering Germany. Others were from E. Merck, Darmstadt, Germany.

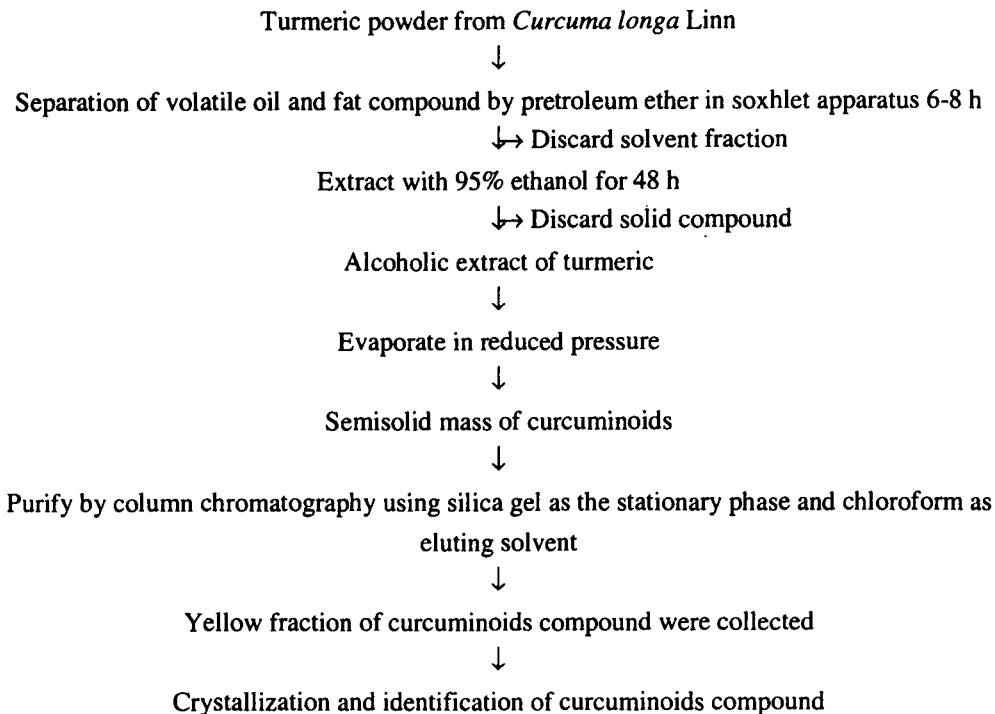

Apparatus

Organ bath for smooth muscle preparation with isometric transducer and recording system for physiograph. (Narcobiosystem USA)

Method

Plant preparation

The dried rhizome was ground into powder and the extraction process started with separation of volatile substance and fat compound from the powder by distillation in soxhlet apparatus for 6-8 h using petroleum ether as an extraction solvent, then the powder was macerated in 95 per cent ethanol for 48 h. The ethanolic extract was concentrated under reduced pressure to a semisolid mass. The compound was further purified using column chromatography containing silica gel as the stationary phase and eluted with chloroform. Yellow fraction of curcuminoids were collected, crystallization and drying. Identification of curcuminoids substance was performed for comparison with standard curcuminoids by thin layer chromatography (TLC) (Fig. 2). Appropriate concen-



R1, R2 = OCH₃ ; Curcumin

R1 = OCH₃, R2 = H ; Demethoxycurcumin

R1, R2 = H ; Bisdemethoxycurcumin

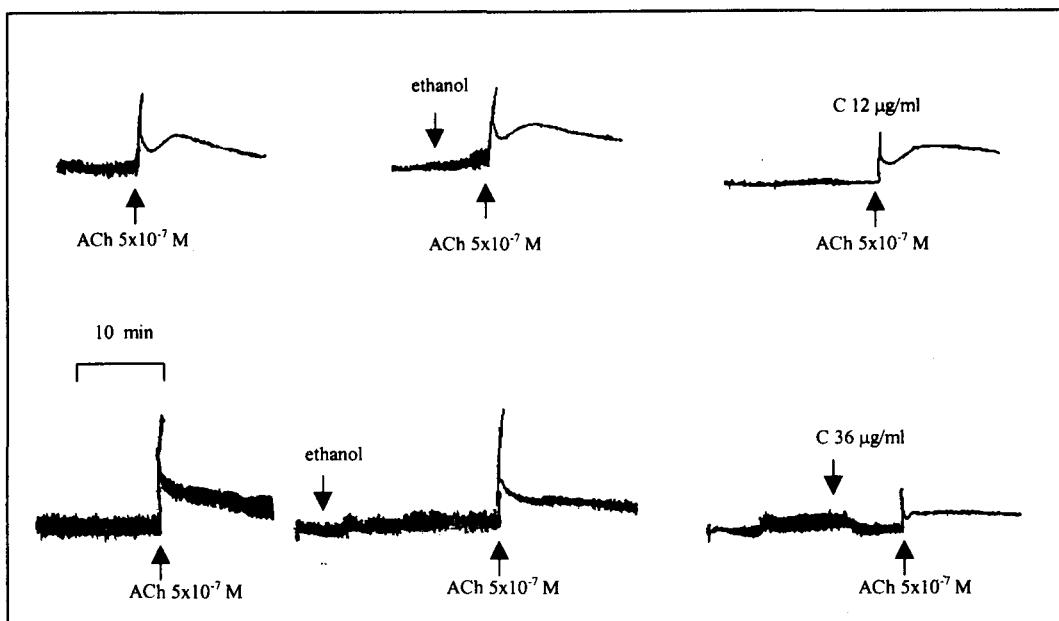
Fig. 1. Chemical structures of curcuminoids from turmeric rhizomes.

Fig. 2. Diagram demonstrates the extraction and purification process of curcuminoids compound from *Curcuma longa* Linn (turmeric).

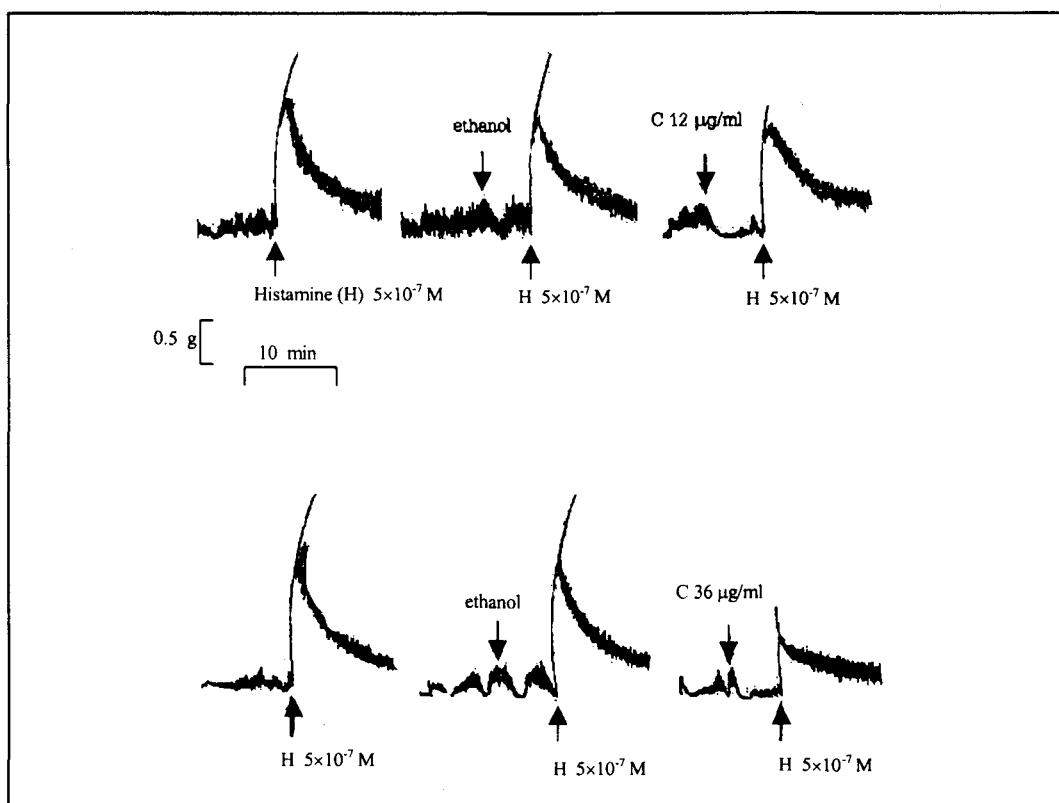
tration of the extracts were prepared in 95 per cent ethanol and used in the experiment. The volume of 30 μ l was added for each study concentration.

Antispasmodic activity of curcuminoids on histamine, acetylcholine and $CaCl_2$ induced contractile response of guinea-pig isolated ileum

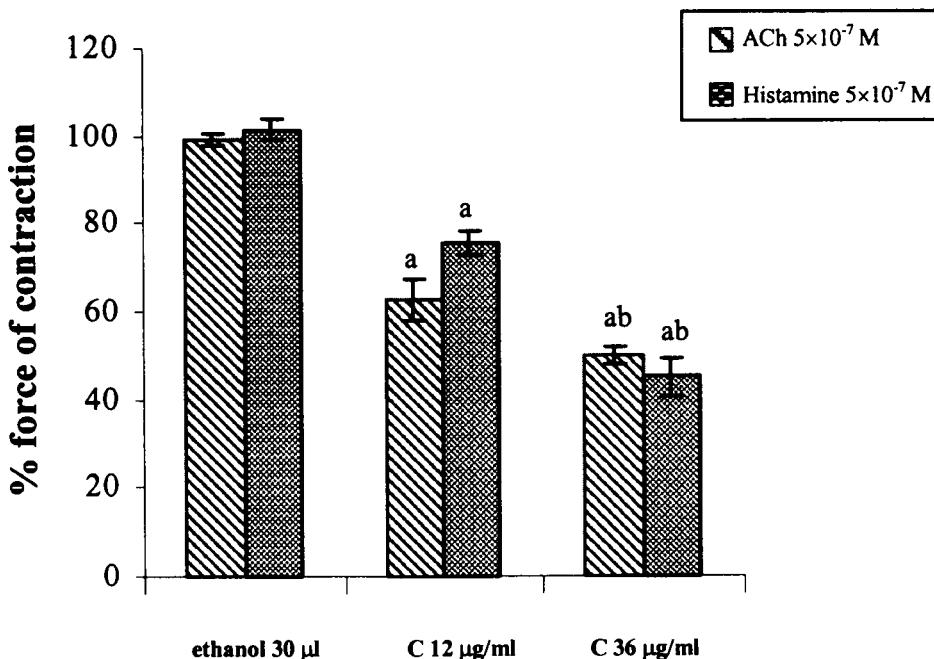
After overnight fasting, the guinea pig was killed by a blow to the base of the skull and cervical dislocation, a piece of ileum (1 cm length) was suspended in an organ bath containing Tyrode solution (composition in g/L : NaCl 8.00, KCl 0.20, NaHCO₃ 1.00, MgCl₂ 0.21, NaH₂PO₄ 0.05, CaCl₂ 0.26, glucose 1.00) at 37°C gassed with 95 per cent CO₂ and 5 per cent O₂. The tissue was allowed to equilibrate for 45 min (the physiological medium was changed every 20 min). The guinea-pig ileum was pre-contracted with acetylcholine 5 \times 10⁻⁷ M or histamine 5 \times 10⁻⁷ M (submaximal concentration which causes 60- 70 per cent of maximum contraction) for 15 min. When the contractile response was completely obtained, the guinea-pig ileum was rinsed with Tyrode


solution every 20 min until tension returned to the baseline level. Then it was incubated in 95 per cent ethanol (curcuminoids dissolving solvent or curcuminoids 12 μ g/ml or 36 μ g/ml) for 5 min. The tissue was contracted again with acetylcholine 5 \times 10⁻⁷ M or histamine 5 \times 10⁻⁷ M. Comparison of ileal contraction was performed before and after exposure to 95 per cent ethanol, curcuminoids 12 and 36 μ g/ml in a tissue bath.

$CaCl_2$ 1.8 mM induced ileal contraction was performed in potassium depolarizing Tyrode solution for 30 min then curcuminoids 4, 20 μ g/ml or solvent were added and recorded ileal contraction for 20 min. Relaxation of $CaCl_2$ induced-contraction was calculated after curcuminoids were applied.


Uterine relaxant effect of curcuminoids

Female Wistar rats were pretreated with estradiol valerate 0.1 mg/kg the body weight subcutaneously 24 h before starting the experiment to bring rat uterus into the estrous stage. The animal was sacrificed by a blow to the base of the skull. The


A

B

Fig. 3. Relaxation response of isolated guinea-pig ileum pre-contracted with ACh 5×10^{-7} M (A) Histamine 5×10^{-7} M (B) in Tyrode solution elicited by curcuminoids 12 and 36 $\mu\text{g/ml}$.

Fig. 4 Inhibitory effect of curcuminoids (C) compound 12 and 36 μ g/ml on isolated guinea-pig ileum pre-contracted with ACh 5×10^{-7} M and histamine 5×10^{-7} M in Tyrode solution. Each value represents mean \pm SE of 7 experiments.

a = $p < 0.05$ vs ethanol 30 μ l

b = $p < 0.05$ vs curcuminoids 12 μ g/ml

abdomen was opened and the intestine was removed to reveal the uterus. Both horns of the uterus were dissected and transferred them to De Jalon solution (composition in g/L : NaCl 9.0, KCl 0.42, CaCl_2 0.06, NaHCO_3 0.5, glucose 0.5) aerated with 95 per cent CO_2 and 5 per cent O_2 and maintained at $37 \pm 0.05^\circ\text{C}$. Each horn of the uterus was cut longitudinally and divided into four pieces of uterine muscle sheets. Each piece of uterine sheet was mounted in an organ bath in the same condition as described and allowed to equilibrate for 45 min. The medium was changed every 20 min. A change in isometric tension was measured with a force transducer. The uterus was pre-contracted with oxytocin 1×10^{-2} IU/ml (submaximal contraction which caused 70-80% maximal contraction). The uterus was washed several times with physiological medium, then 95 per cent ethanol (a solvent for dissolving curcuminoids), curcuminoids 8, 16 μ g/ml were applied for 15 min. The uterus was con-

tracted again with oxytocin 1×10^{-2} IU/ml. Change in contractile response and frequency of contraction were measured before and after exposure to 95 per cent ethanol, curcuminoids 8, 16 μ g/ml.

The effect of 95 per cent ethanol, curcuminoids 8, 16 μ g/ml were also evaluated on acetylcholine 1×10^{-5} M, KCl 50 mM pre-contracted uterus.

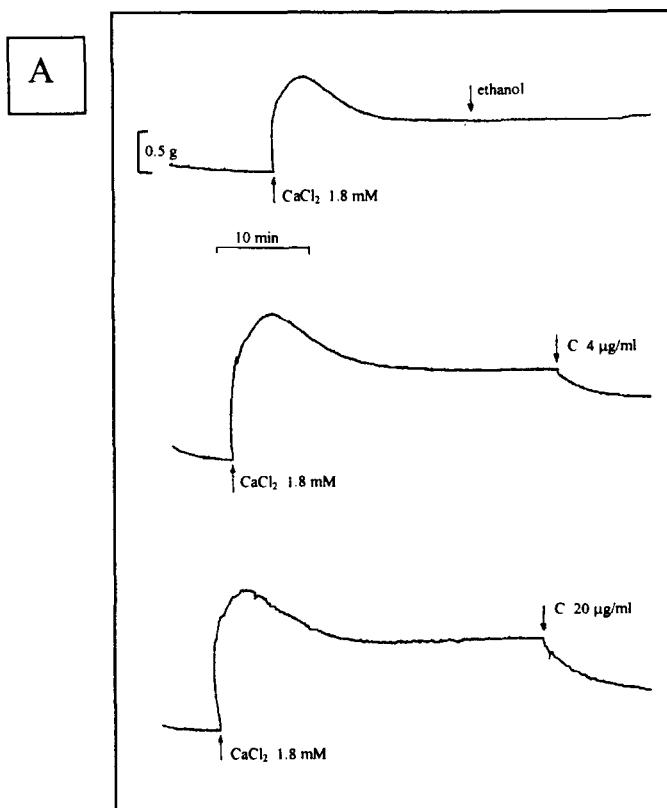
Statistical analysis

Contractile responses (force) or frequency of contraction were expressed as percentage of the maximal contraction (100%) induced by appropriate contractile stimuli before exposure to solvent or curcuminoids (mean \pm SE)

Statistical differences between the treated and untreated control (95% ethanol) were analysed by student's unpaired *t*-test and one-way analysis of variance (ANOVA Bonferroni method). A probability level of less than 0.05 was regarded as statistical difference.

RESULTS

Total curcuminoids (yield) obtained was 11 per cent from this study.


Antispasmodic activity of curcuminoids on histamine, acetylcholine and CaCl_2 induced contractile response of guinea-pig isolated ileum

Exposure of the preparation for 5 min to a given solvent (95% ethanol 30 μl) did not alter the contraction induced by submaximal concentration of $\text{ACh} 5 \times 10^{-7} \text{ M}$, histamine $5 \times 10^{-7} \text{ M}$ and $\text{CaCl}_2 1.8 \text{ mM}$. However curcuminoids at the concentration of 12, 36 $\mu\text{g/ml}$ significantly attenuated acetylcholine induced ileal contraction to 62.84 ± 4.66 per cent and

42.79 ± 1.98 per cent. Histamine ($5 \times 10^{-7} \text{ M}$) mediated contractile response was decreased significantly after exposure to curcuminoids 12, 36 $\mu\text{g/ml}$ to 75.60 ± 2.77 per cent and 44.93 ± 9.33 per cent (Fig. 3, 4). In potassium depolarizing Tyrode solution (a calcium free medium, a depolarization condition) CaCl_2 induced ileal tonic contractile response. Curcuminoids 4, 20 $\mu\text{g/ml}$ reduced response to CaCl_2 to 63.31 ± 1.80 per cent and 36.87 ± 3.25 per cent as shown in Fig. 5.

Uterine relaxant effect of curcuminoids

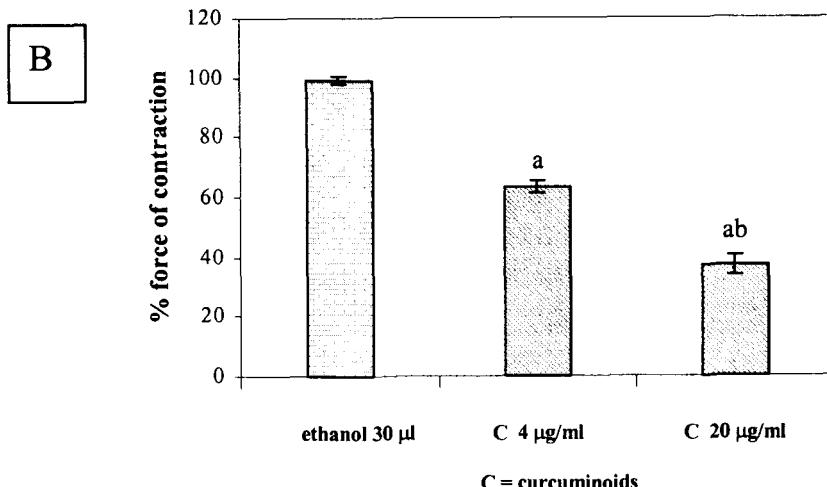

Curcuminoids 8 $\mu\text{g/ml}$ significantly inhibited force and frequency of rat uterine pre-contraction

Fig. 5A. A decrease in sustained contractile response of isolated guinea-pig ileum induced by $\text{CaCl}_2 1.8 \text{ mM}$ 30 min in depolarizing Tyrode solution after ethanol 95 per cent or curcuminoid 4 and 20 $\mu\text{g/ml}$ exposure. Each value represents the mean \pm SE of 7 experiments.

a = $p < 0.05$ vs ethanol 30 μl

b = $p < 0.05$ vs curcuminoids 4 $\mu\text{g/ml}$

Fig. 5B Relaxant effect of curcuminoids 4 and 20 µg/ml on CaCl_2 induced guinea-pig ileal contraction. Each value represents the mean \pm SE of 7 experiments.

a = $p < 0.05$ vs ethanol 30 µl

b = $p < 0.05$ vs curcuminoids 4 µg/ml

produced by oxytocin 1×10^{-2} IU/ml, ACh $2 \mu\text{g/ml}$ and the attenuation in force and frequency of contraction were more prominent when uterine tissue was exposed to curcuminoids $16 \mu\text{g/ml}$. Exposure to curcuminoids also elicited relaxation of uterine smooth muscle precontracted with KCl 50 mM . (Table 1, Fig. 6)

DISCUSSION

The result from the present study has shown that curcuminoids, a yellow compound isolated from *C. longa* in the concentration at $12 \mu\text{g/ml}$ elicited relaxation of ileum pre-contracted with ACh 5×10^{-7} M and histamine 5×10^{-7} M to 62.84 per cent and 75.60 per cent respectively and these effects were more clearly found after exposure to curcuminoids $36 \mu\text{g/ml}$ (42.79% and 44.93%). Control of tension in gastrointestinal smooth muscle is in large part dependent on the intracellular Ca^{2+} concentration(20). In general, there are two types of excitation-contraction coupling based on the type of mechanism responsible for change in Ca^{2+} concentration. Electromechanical coupling requires changes in membrane potential which activate voltage-dependent Ca^{2+} channel to trigger

an influx of Ca^{2+} . The others are pharmacomechanical coupling, in which chemical agents act *via* specific receptors and can bring both excitatory and inhibitory in nature.

Impaired histamine and acetylcholine induced guinea-pig ileal contraction through H_1 and M_3 receptor were obtained after curcuminoids exposure might be the result of inhibition through receptor-mediated contraction. However, curcuminoids also provided a non-receptor mediated mechanism for ileal contraction since its compound (4 and $20 \mu\text{g/ml}$) exerted an inhibitory effect on ileal pre-contracted with CaCl_2 1.8 mM in potassium depolarizing Tyrode solution (Ca^{2+} free medium). Curcuminoids impaired ileal smooth muscle contraction was partly due to interfering with Ca^{2+} influx *via* voltage-sensitive calcium channel(21).

As uterine contraction is triggered by increases in cytosolic Ca^{2+} concentration which arises from several mechanisms. Entry through the surface membrane calcium channel or Ca^{2+} release from the sarcoplasmic reticulum (SR) is responsible for its contraction mechanism(22). Uterine contractant such as oxytocin, acetylcholine (through oxytocin and M_3

receptors) increase force and frequency of uterine contraction by increasing influx and release from intracellular Ca^{2+} store secondary to phospholipase C (PLC) activation⁽²³⁾ curcuminoids 8 $\mu\text{g}/\text{ml}$ decreased force and frequency of uterine contraction after pre-contraction with oxytocin 1×10^{-2} IU/ml and ACh 2 $\mu\text{g}/\text{ml}$ to 54.68 and 73.01 per cent (force) and 79.09 and 76.33 per cent (frequency) respectively. The

uterine relaxation was more prominent when a higher concentration of curcuminoids (16 $\mu\text{g}/\text{ml}$) was applied. Relaxation of the pre-contracted rat uterus with oxytocin and histamine by curcuminoids in the present study may imply alteration of regulatory phosphorylation mechanism and produced change in intracellular Ca^{2+} . KCl (depolarizing stimulant) triggers smooth muscle contraction by promoting Ca^{2+} influx through

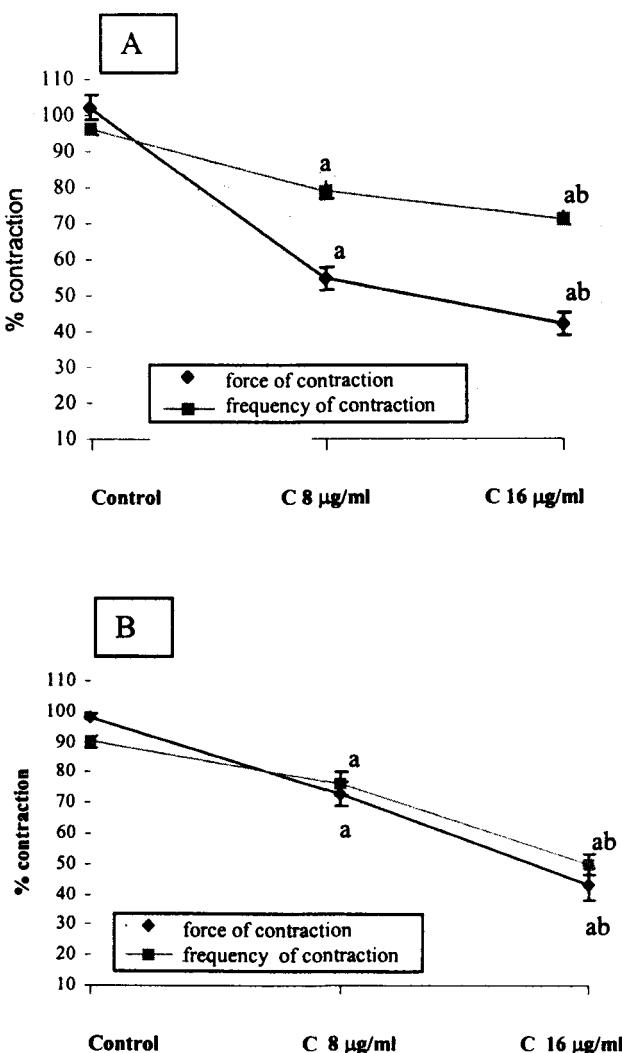


Fig. 6. Antispasmodic effects of curcuminoids 8 and 16 $\mu\text{g}/\text{ml}$ on isolated rat uterus pre-contracted with oxytocin 1×10^{-2} IU/ml (A) ACh 2 $\mu\text{g}/\text{ml}$ (B) and KCl 50 mM (C). Each value represents the mean \pm SE of 7 experiments

a = $p < 0.05$ vs ethanol 30 μl

b = $p < 0.05$ vs curcuminoids 8 $\mu\text{g}/\text{ml}$

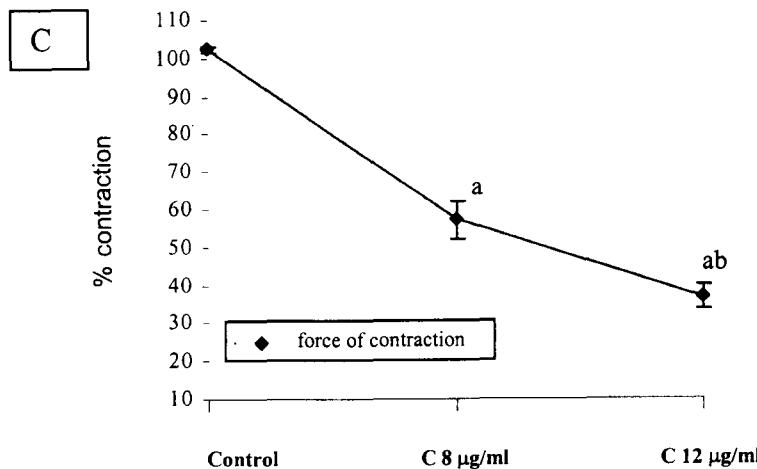


Fig. 6. Antispasmodic effects of curcuminoids 8 and 16 µg/ml on isolated rat uterus pre-contracted with oxytocin 1×10^{-2} IU/ml (A) ACh 2 µg/ml (B) and KCl 50 mM (C). Each value represents the mean \pm SE of 7 experiments

a = $p < 0.05$ vs ethanol 30 µl

b = $p < 0.05$ vs curcuminoids 8 µg/ml

Table 1. Relaxant effect of curcuminoids 8,16 µg/ml on force and frequency of rat uterine contraction induced by oxytocin 1×10^{-2} IU/ml, ACh 2 µg/ml, KCl 50 mM. The results have been expressed as the per cent of maximum response to standard agonist prior exposure to curcuminoids. Values shown are mean \pm SE (n = 7) a = significant difference from ethanol 30 µl, b = significant difference from curcuminoids 8 µg/ml treated group. ($p < 0.05$)

Standard agonist on uterine smooth muscle	95% ethanol 30 µl		Curcuminoids 8 µg/ml		Curcuminoids 16 µg/ml	
	Force of contraction	Frequency of contraction	Force of contraction	Frequency of contraction	Force of contraction	Frequency of contraction
Oxytocin 1×10^{-2} IU/ml	102.34 ± 3.57	96.35 ± 1.52	54.68 ± 3.34^a	79.09 ± 2.29^a	42.34 ± 3.16^{ab}	71.18 ± 1.89^{ab}
ACh 2 µg/ml	98.40 ± 1.97	90.29 ± 0.71	73.01 ± 4.10	76.33 ± 3.94^a	43.38 ± 3.56^{ab}	49.96 ± 5.20^{ab}
KCl 50 mM	102.33 ± 0.68	-	$57.10^a \pm 4.92$	-	36.60 ± 2.99^{ab}	-

voltage-sensitive calcium channel that are readily activated by membrane depolarization(24). KCl also increases intracellular Ca^{2+} released from the calcium store in sarcoplasmic reticulum(25). Curcuminoids 8, 16 µg/ml attenuated KCl 50 mM induced uterine contraction to 57.10 and 36.60 per cent. Therefore, extracellular Ca^{2+} influx through voltage-sensitive calcium channel is thought to be inhibited by

the study compound. Inhibition of uterine pre-contracted with oxytocin 1×10^{-2} IU/ml, ACh 2 µg/ml and KCl 50 mM suggested that curcuminoids impaired uterine contraction likely through receptor and voltage ion channel mechanism.

The ileal and uterine smooth muscle relaxant effect of curcuminoids from *C longa* might support its folk use as a medicinal plant for the treatment of

some gastrointestinal disorders and menstrual difficulty. It could be beneficial in patients suffering from a peptic ulcer(17,18).

In summary, the result obtained from the present study suggested that curcuminoids isolated from turmeric rhizomes exerted a relaxant effect on guinea-pig ileum pre-contracted with several contractile stimuli (ACh 5×10^{-7} M, histamine 5×10^{-7} M

and CaCl_2 1.8 mM) as well as uterine smooth muscle pre-contracted with oxytocin 1×10^{-2} IU/ml, ACh 2 $\mu\text{g}/\text{ml}$ and KCl 50 mM through receptor dependent and independent mechanism.

ACKNOWLEDGEMENT

This research work was supported by Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University.

(Received for publication on April 21, 2003)

REFERENCES

1. Helen CF. Isolation, purification and characterization of insect repellants from *Curcuma longa*. *J Agric Food Chem* 1982; 30: 290.
2. Tewtrakul S, De-Eknamkul W, Ruangrungsi N. Stimulataneous determination of individual curcuminoids in tumeric by TLC-densitometric method. *Thai J Pharm Sci* 1992; 16: 251-9.
3. Lin JK, Lin-Shiau SY. Mechanism of cancer chemoprevention by curcumin. *Proc Natl Sci Coun ROC (B)* 2001; 25: 59-66.
4. Ammon HP, Wahl MA. Pharmacology of *Curcuma longa*. *Planta Med* 1991; 57: 1-7.
5. Pongboonrond S. Mai-tet-muang-Thai. Bangkok: Kasem Bannakit Press; 1966: 92-3.
6. Kunchandy E, Rao MNA. Oxygen radical scavenging activity of curcumin. *Int J Pharm* 1990; 38: 239-40.
7. Subramanian M, Sreejayan Rao MNA, Devasagayam TPA, Singh BB. Diminution of singlet oxygen-induced DNA-damage by curcumin and related antioxidants. *Mutat Res* 1994; 311: 249-55.
8. Rao CV, Kawamori T, Hamid R, Reddy B. Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase selective inhibitor. *Carcinogenesis* 1999; 20: 641-4.
9. Zhang F, Altorki NK, Mestre JR, Subbaaramaiah K, Dannenberg AJ. Curcumin inhibits cyclooxygenase-2 transcription in bile acid and phorbol ester-treated human gastrointestinal epithelial cells. *Carcinogenesis* 1999; 20: 445-51.
10. Inano H, Onoda M, Inofuku N, et al. Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with γ -rays. *Carcinogenesis* 1999; 20: 1011-8.
11. Mukophadhyay A, Basu N, Ghatak N, Gujral PK. Anti-inflammatory and irritant activities of curcumin analogues in rats. *Agents and Action* 1982; 12: 508-15.
12. Srimal RC, Dhawan BN. Pharmacology of dif eruloyl methane (curcumin), a non-steroidal anti- inflammatory agent. *J Pharm Pharmacol* 1973; 25: 447-52.
13. Araujo CAC, Alegrio LV, Castro D, Lima MEF, Leon LL. *Leishmania amazonensis*: *In vivo* experiments with diarylheptanoids from Leguminosae and Zingiberaceae plants. *I Mem Inst Oswaldo Cruz* 1998; 93 (Suppl II): 306.
14. Rasmussen HB, Christensen SB, Kvist LP, Karazmi A. A simple and efficient separation of the curcuminoids, the antiprotozal constituents of *Curcuma longa*. *Planta Med* 2000; 66: 396-8.
15. Bhavani Sankar TN, Murthy S. Effect of turmeric (*Curcuma longa*) fractions on the growth of some intestinal and pathogenic bacteria *in vitro*. *Indian J Exp Biol* 1979; 17: 1363-6.
16. Mazumber A, Raghavan K, Weinstein J, Kohn KW, Pommer Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. *Biochem Pharmacol* 1995; 49: 1165-70.
17. Prucksunand C, Indrasukhsri B, Leethochawalit M, Hungspreugs K. Phase II clinical trial on effect of the long turmeric (*Curcuma longa* Linn.) on healing of peptic ulcer. *Southeast Asian J Trop Med Public Health* 2001; 32: 208-15.
18. Kositchaiwat J. *Curcuma longa* Linn in the treatment of gastric ulcer comparison to liquid antacid : A control clinical trial. *J Med Assoc Thai* 1993; 76: 601-5.
19. Perry WLM. Pharmacological experiments on isolated preparations. In : Perry WLM. Eds. London: E&S Livingstone; 1970: 92-5.
20. Pasricha PJ. Prokinetic agent, antiemetics, and agents used in Irritable Bowel Syndrome. In Hardman JG, Limbird LE, Gilman AG, eds. *Goodman & Gilman's The Pharmacological Basis of Therapeutics*. 10th ed. New York : McGraw-Hill Companies; 2001: 1021-36.
21. Martin HB, McCallum M, Stofer WD, Eichinger MR. Kava attenuates vascular contractility through inhibition of calcium channels. *Planta Med* 2002; 68: 784-9.

22. Shmigol A, Eisner DA, Wray S. Properties of voltage-activated $[Ca^{2+}]$ transients in single smooth muscle cell isolated pregnant rat uterus. *J Physiol* 1998; 511: 803-11.

23. Sanborn BM, Dodge K, Monga M, Qian A, Wang W, Yue C. Molecular mechanisms regulating the effects of oxytocin on myometrial intracellular calcium. *Edv Exp Med Biol* 1998; 449: 277-86.

24. Wong IYF, Huang Y, He ZD, Lau CW, Chen ZY. Relaxing effects of *Ligustrum purpurascens* extract and purified acetoside in rat aortic rings. *Planta Med* 2001; 67: 317-21.

25. Mironneau J. Uterine smooth muscle electrophysiology and pharmacology. In Szekeres L, Papp JG. eds. *Pharmacology of smooth muscle*. Berlin: Springer-Verlag; 1994: 445-63.

ฤทธิ์คลายการหดตัวของสารเคอร์คิวมินอยด์ต่อกล้ามเนื้อเรียบลำไส้เล็กทุกขนาดและกล้ามเนื้อเรียบมดลูกทุกขนาด

จันทนี อิทธิพานิชพงศ์, วทม*, นิจศิริ เรืองรังษี, ปรุด**,
วันดี เข็มศรี, วทบ*, อนุกูล สวัสดิพานิชย์, วทม*

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาฤทธิ์คลายการหดตัวของสาร curcuminoids 12 μ g/ml สามารถยับยั้งการหดตัวของกล้ามเนื้อเรียบลำไส้เล็กทุกขนาดส่วน ileum ที่เกิดจากการกระตุนด้วย acetylcholine 5×10^{-7} M และ histamine 5×10^{-7} M ได้อよ่างมีนัยสำคัญทางสถิติ (แรงหดตัวเป็น $62.84 \pm 4.66\%$ และ $75.60 \pm 4.66\%$ ตามลำดับ) และฤทธิ์ยับยั้งการหดตัวนี้จะเพิ่มมากขึ้น (แรงหดตัวเป็น $44.93 \pm 4.33\%$ และ $42.79 \pm 1.98\%$ ตามลำดับ) เมื่อใช้สาร curcuminoids 36 μ g/ml สาร curcuminoids 4 และ 20 μ g/ml สามารถทำให้การหดตัวของกล้ามเนื้อเรียบลำไส้เล็กทุกขนาดส่วน ileum ลดลงเป็น $63.31 \pm 1.80\%$ และ $36.87 \pm 3.25\%$ เมื่อได้รับสารกระตุนการหดตัว CaCl₂ 1.8 mM ในน้ำยา potassium depolarizing Tyrode solution ส่วนผลต่อกล้ามเนื้อเรียบมดลูกทุกขนาด พบว่า curcuminoids 8 และ 16 μ g/ml สามารถลดแรงหดตัวและความถี่ของการหดตัวที่เกิดขึ้นจากการกระตุนด้วย oxytocin 1×10^{-2} IU/ml อย่างมีนัยสำคัญทางสถิติ โดย curcuminoids 8 μ g/ml ทำให้แรงหดตัวเป็น $54.68 \pm 3.34\%$ และความถี่ของการหดตัวเป็น $79.09 \pm 2.29\%$ และ curcuminoids 16 μ g/ml ทำให้แรงหดตัวลดลงมากขึ้นเป็น $42.34 \pm 3.16\%$ และความถี่การหดตัวเป็น $71.18 \pm 1.89\%$ ($p < 0.05$) และเมื่อใช้สารกระตุนเป็น acetylcholine 2 μ g/ml พบว่า curcuminoids 8 μ g/ml ทำให้แรงหดตัวและความถี่ของการหดตัวลดลงเป็น $73.01 \pm 4.10\%$ และ $76.33 \pm 3.94\%$ และถ้าใช้ curcuminoids 16 μ g/ml แรงหดตัวและความถี่จะลดลงมากขึ้นอีกเป็น $43.38 \pm 3.56\%$ และ $49.96 \pm 5.20\%$ เมื่อใช้สารกระตุนการหดตัวเป็น potassium chloride 50 mM แรงหดตัวลดลงตามขนาดของ curcuminoids ที่ใช้คือขนาด 8 μ g/ml แรงหดตัวลดลงเป็น $57.10 \pm 4.92\%$ และขนาด 16 μ g/ml เป็น $36.60 \pm 2.99\%$ ซึ่งผลจากการศึกษาอาจสรุปได้ว่าสาร curcuminoids มีฤทธิ์ยับยั้งการหดตัวกล้ามเนื้อเรียบลำไส้เล็กส่วน ileum ของทุกขนาด และกล้ามเนื้อเรียบมดลูกทุกขนาด โดยกลไกที่ผ่านการทำงานของรีเซฟเตอร์และไม่ผ่านการทำงานของรีเซฟเตอร์

คำสำคัญ : เคอร์คิวมินอยด์, ฤทธิ์คลายการหดตัว, ขนาด

จันทนี อิทธิพานิชพงศ์, นิจศิริ เรืองรังษี,

วันดี เข็มศรี, อนุกูล สวัสดิพานิชย์

จดหมายเหตุทางแพทย์ ฯ 2546; 86 (ฉบับพิเศษ 2): S299-S309

* ภาควิชาชีววิทยา, คณะแพทยศาสตร์,

** ภาควิชาเวท, คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพ ฯ 10330