

Immediate and Early Results of Mitral Valve Repair at King Chulalongkorn Memorial Hospital

SERI SINGHATANADGIGE, MD*,
SMONPORN BOONYARATAVEJ, MD**

Abstract

Objective : Comparison with prosthesis mitral valve replacement, mitral valve repair has lots of advantages. After valve repair, patients have better left ventricular function, a lower rate of thromboembolism and infective endocarditis. The authors studied early experience of mitral valve repair.

Material and Method : From January 2000 to May 2002, 43 consecutive patients with mitral regurgitation had mitral valve repair. Valve disease was degenerative in 51.2 per cent, ischemic in 18.7 per cent, rheumatic in 13.9 per cent, infectious in 11.6 per cent, and others in 4.6 per cent. Surgical techniques included P2 quadrangular resection ($n = 13$; 30.95%), chordal transfer ($n = 11$; 26.19%), only annuloplasty ($n = 10$; 23.8%), artificial chordae ($n = 3$; 7.14%), commissural closure ($n = 3$; 7.14%), and others in 2 cases (4.76%).

Result : Immediate post-operative echocardiogram showed no or trivial regurgitation in 95 per cent and moderate regurgitation in 5 per cent. There was no operative mortality, but 1 case had hospital mortality with 1-24 months follow-up, 90 per cent of cases had FC. I and the other (10%) were in FC II.

Conclusion : This preliminary experience provided promising immediate and early result. The authors believe that mitral valve repair is safe and seems to have a much better result than mitral valve replacement. However, a randomized control study and long-term follow-up, in the future, are important.

Key word : Mitral Regurgitation, Mitral Valve Repair, Pathology of Mitral Valve, Technique of Mitral Valve Repair

SINGHATANADGIGE S & BOONYARATAVEJ S
J Med Assoc Thai 2003; 86 (Suppl 2): S350-S357

* Cardiovascular and Thoracic Unit, Department of Surgery.

** Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand.

The etiology and pathology of mitral valve insufficiency in Asian populations is quite different from that in western countries(1,2). Even though, there are still many cases of rheumatic heart disease, the other causes of mitral regurgitation such as myxomatous valve, ischemic heart disease as well as infective endocarditis are not uncommon. All of these etiologies need mitral valve repair instead of mitral valve replacement because patients who have valve repair usually result in preserving left ventricular function, fewer thromboembolism events, less infective endocarditis and avoid life-long anticoagulation(3-5). The authors report experience of mitral valve repair in the aspects of cause of disease, valvular pathology, technique of repair and immediate to early result.

MATERIAL AND METHOD

Between January 2000 and May 2002, 43 consecutive patients had mitral valve repair at King Chulalongkorn Memorial Hospital. All of these patients were operated on by one surgeon. The patients were aged from 9 to 79 years (mean age, 49.23 ± 21.1 years). Pre-operative New York Heart Association functional class was 3 or 4 in 39 of these patients (90.70%). The pre-operative patient characteristics are shown in Table 1. The leading cause of mitral insufficiency was myxomatous degeneration (51.2%) Table 2 lists various causes of mitral regurgitation found among these patients.

In the rheumatic group, 2 patients were operated on during the active phase of acute rheumatic fever. All the patients in this group ($n = 6$) were younger than 16 years old.

In the ischemic mitral regurgitation patients ($n = 8$), cases were suffering from severe pulmonary edema due to acute myocardial infarction and complicated papillary muscle rupture. Mitral insufficiency was chronic in the other 6 patients and was caused by left ventricular geometric changing (LV Remodeling)

Operative technique

A membrane oxygenator with a standard roller pump was used for extracorporeal circulation. Mild systemic hypothermia ($30 - 32^\circ\text{C}$) was employed. Myocardial protection was obtained with combined antegrade and retrograde cold blood cardioplegia (4 : 1) through the aortic root and the coronary sinus without topical hypothermia. Exposure of the mitral valve was via the classical interatrial groove incision in 81.4

Table 1. Characteristics of the patients.

Patient's characteristics	N	%
Patients (n)	43	
Male/female	24/19	
Age (y)	9-79	
Mean age (mean \pm SD)	49.23 ± 21.1	
NYHA class (mean \pm SD)	3.34 ± 0.65	
History of CHF	24	55.8
History of angina pectoris	11	25.6
Previous stroke	3	6.9
Renal impairment ($\text{cr} > 2$)	4	9.3
Diabetic	8	18.6
Hypertension	9	20.9
Pre-operative IABP	2	4.6
Pre-operative assisted ventilation	2	4.6
Pre-operative acute MI with shock	1	2.3
Pre-operative unstable angina	5	11.6
Cardiac rhythm		
Sinus rhythm	24	55.8
Atrial fibrillation	19	44.2

SD = Standard deviation

CHF = Congestive heart failure

IABP = Intra-aortic balloon pump

Table 2. Causes of mitral regurgitation.

Causes	N	%
Myxomatous degeneration	22	51.2
Ischemic heart disease	8	18.7
Rheumatic heart disease	6	13.9
Infective endocarditis	5	11.6
Congenital mitral cleft	1	2.3
HOCM with SAM	1	2.3

HOCM = Hypertrophic obstructive cardiomyopathy

SAM = Systolic Anterior Motion of Mitral Valve

per cent and via the superior transeptal approach in 18.6 per cent. The superior transeptal incision of the left atrium was selected in the patients who had a small left atrium. Table 3 summarizes the anatomic findings of the mitral valve pathology.

Most of the patients (65.12%) had annular dilatation, either isolated or combined with other pathology. In cases of mitral insufficiency caused by the prolapse of the valvular leaflet, the prolapsing segments were located more frequently at the mid-portion of either the anterior or posterior leaflet (A2 or P2) than the commisural segment. The authors found that the prolapse of the posterior leaflet was due to chordal elongation in 38.46 per cent and due to chordal rupture in 61.54 per cent. The anterior pro-

lapse was not much different from the posterior. It was from chordal rupture in 53.85 per cent, chordal elongation in 30.77 per cent and papillary muscle rupture in 15.38 per cent.

There were 18 patients who had a concomitant procedure performed with repair of the mitral valve. (Table 4)

The technique of mitral valve repair (Table 5) depended on the echocardiographic data and the operative finding. In 13 patients (30.23%) the prolapse of the mid portion of posterior leaflet was corrected with a quadrangular resection of the prolapse area. The resulting gap was then repaired using 2 different techniques. The method based on plication of the annulus described by Carpentier et al and associates (6,7) was used in 9 patients. In another 4 patients, a sliding leaflet plasty was performed (8-10). The latter technique was selected when the height of the posterior mitral leaflet was more than 2 cm (usually found in myxomatous valve). In 11 patients, the anterior prolapse was corrected by chordal transfer (from primary chordae of P2 to the edge of A2 prolapsed portion). Recently, the authors used 4-0 polytetrafluoro ethylene (Gore-Tex; W.L. Gore & Associates, Flagstaff, AZ) for replacement of the A2 chordal in 3 cases. This technique was proposed by David and Frater et al.

It most of the patients (90.69%), the Cosgrove-Edwards Annuloplasty System was used to reduce the size of the annulus, reshape it, and reinforce the repair (11,12). The annuloplasty band sizes are reported in Table 6. Pericardial strip was used in 2 patients and no ring was used in 2 cases.

Anticoagulation

Anticoagulant treatment was not given to the patients who had sinus rhythm. Warfarin sodium was always used for patients with atrial fibrillation to maintain the international normalized ratio between 2.0 and 3.0

Follow-up

Information from outpatient data and telephone contacts with patients or their relatives was collected as part of the follow-up. The average duration of follow-up was 14 + 1.1 months. One patient was lost to follow-up.

RESULTS

One patient died in the hospital, giving an operative mortality rate of 2.3 per cent. This patient

Table 3. Anatomic details of mitral valve pathology.

Pathology	N = 43
Annular dilatation	28
Prolapsed leaflet	31
Posterior	16
P1	0
P2	13
P3	3
Anterior	15
A1	1
A2	13
A3	1
Restricted leaflet	2
Ischemic MR (poor coaptation)	6

P1, P2, P3 } Based on Carpentier's classification (6)
A1, A2, A3

Table 4. Concomitant.

Procedure	Cases	%
CABG	10	23.26
TV Repair	4	9.3
CABG + AV Repair	1	2.33
CABG + AVR	1	2.33
TV Repair + Ligation of coronary AV fistula	1	2.33
Septum myectomy	1	2.33

CABG = Coronary artery bypass graft

TV = Tricuspid valve

AV = Aortic valve

AVR = Aortic valve replacement

AV fistula = Arterio-venous fistula

Table 5. Techniques of valve repair.

Technique	N = 43
P2 quadrangular resection	13
Chordal transfer	11
Only annuloplasty	10
Artificial chordae	3
Closure of commissure	3
Closure of mitral cleft	1
P3 resection	1

P2, P3 = Based on Carpentier's classification (*)

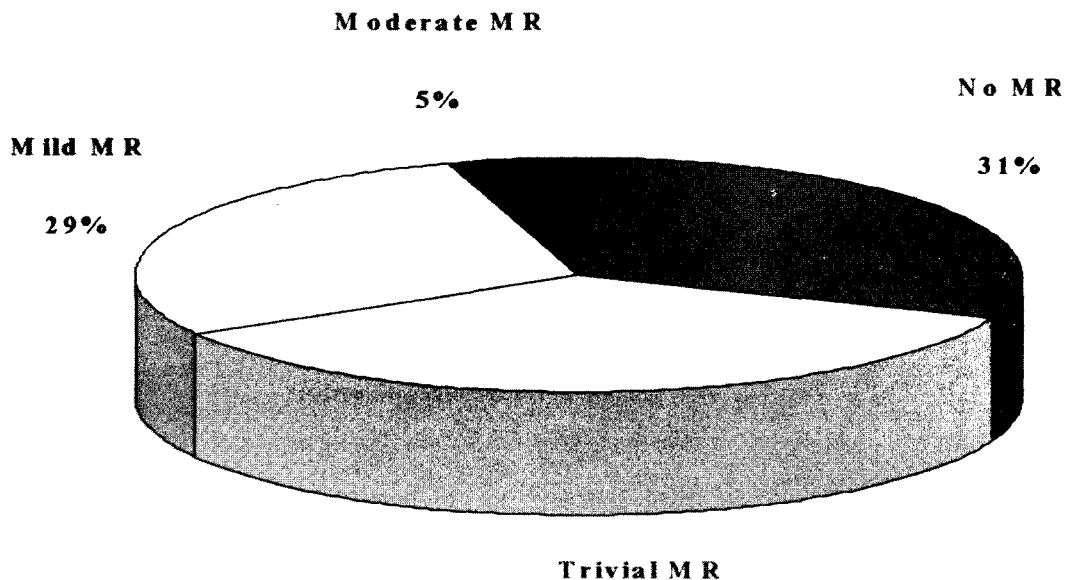

had had coronary artery bypass grafting and aortic valve replacement concomitant with mitral valve repair. He died on the 35th post-operative day. The death was due to pneumonia and respiratory failure.

Table 7. Complications.

Complication	Cases	%
Temporary junctional rhythm	2	4.7
Temporary atrial flutter	1	2.3
Pericardial effusion	3	7.0
Pleural effusion	2	4.7
Infected leg wound	1	2.3
Intravascular hemolysis	1	2.3

Table 6. Size of annuloplasty band.

Size	N	%
28 mm	8	18.6
30 mm	2	4.7
32 mm	12	30.2
34 mm	14	32.6
36 mm	3	7

Fig. 1. Pre-discharge echocardiogram.

The post-operative complications are shown in Table 7.

There were 2 patients who need reoperation for valve replacement. The first patient was a 9 year old boy who had been suffering from acute rheumatic fever and severe mitral regurgitation. Very poor and edematous tissue of the mitral leaflet was found during the first operation. The second case

had to have valve replacement due to intravascular hemolysis after mitral valve repair.

An echocardiogram of the repaired mitral valve was performed in every patient before discharge and at one-year follow-up. The degree of mitral regurgitation before discharge is shown in Fig. 1.

The diameters of the left atrium, left ventricular end systolic (LVES) and left ventricular end

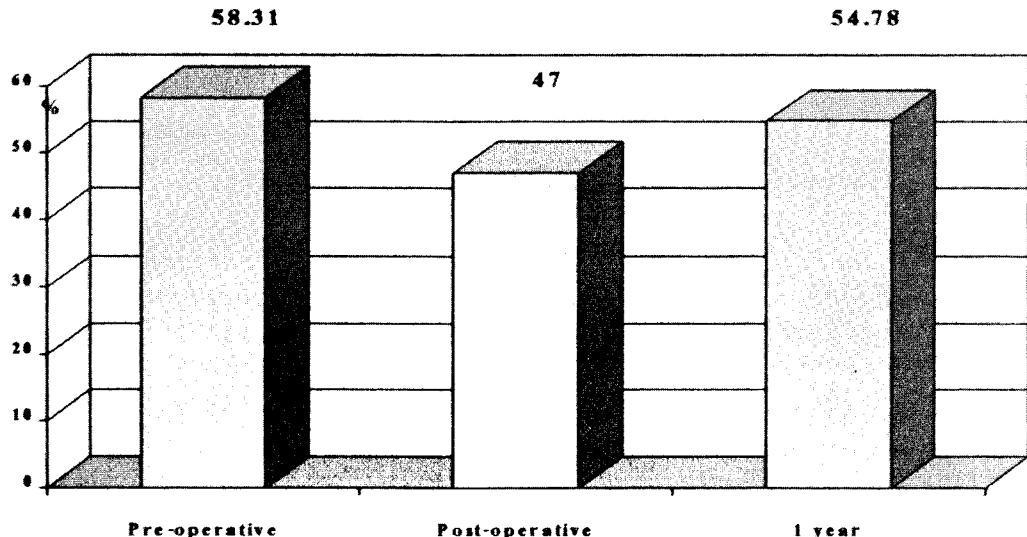
Fig. 2. Pre/post-operative echocardiogram.

diastolic (LVED) are shown in Fig. 2 and the comparison of the left ventricular ejection fraction is shown in Fig. 3.

Survival

There were 2 late deaths (4.6%). One was caused by digitalis toxicity and the cause of death is not known in the other one.

Ninety per cent of the surviving patients are in F.C. I and about 10 per cent are in F.C. II


Comment

The functional results of mitral valve repair have been excellent(13-17). Mitral valve repair offers the advantages of avoiding life-long anticoagulation and preserving chordal as well as left ventricular function. The repair is technically more difficult, with a high failure rate, in the rheumatic group, and the reoperation rate is reported to be 4.8 to 27 per cent (18-23). The causes of failure in rheumatic patients

are as follows: 1) error in judgment, 2) the inherent complexity of the disease process and 3) recurrence or progression of rheumatic carditis(24,25).

The authors' experience with mitral valve repair in the rheumatic population has been encouraging with a subgroup of children and young adults who had severe mitral regurgitation in the early phase of healed rheumatic mitral valve in which only the annular dilatation had been found. The rheumatic valve was not repaired in the late stage because the authors believe that the surgeon could not correct all the leaflet retraction and subvalvular pathology. There was also failure to repair a case of acute carditis due to the very friable valve tissue.

Mitral valve billowing and prolapse (Barlow) still remains a somewhat mysterious disease, probably because of the imprecise terminology. However, Barlow recommended accepting the concept of Carpentier et al of "billowing and prolapse". The authors used different techniques to correct this kind of valvular defect depending on what anatomic patho-

Fig. 3. Pre/post-operative left ventricular ejection fraction.

logy was found. Quadrangular resection was done for mid portion of posterior leaflet prolapse (p2) with a very good result. For anterior leaflet prolapse, two different methods were used to repair the valve. First, the primary chordae of the posterior leaflet was transferred to the prolapsed segment of the anterior leaflet.

Recently, the authors used 4 - 0 PTFE suture as an artificial chordae to replace the pathologic anterior chordae. It is a more simple and effective technique. Nearly all of the presented patients had the Cosgrove-Edwards Annuloplasty System which is very effective(26,27).

(Received for publication on April 21, 2003)

References

1. Gometza B, Kumar N, Prabhakar G, Gallo R, Kandeel M, Duran CMG. The challenge of valve surgery in a developing population. *J Heart valve Dis* 1993; 2: 194-9.
2. Savage DD, Garrison RJ, Devereux RB, et al. Mitral valve prolapse in the general population. 1: Epidemiologic features: The Framingham Study. *Am Heart J* 1983; 106: 571-6.
3. Sand ME, Naftel DC, Blackstone EH, Kirklin JW, Karp RB. A comparison of repair and replacement for mitral valve incompetence. *J Thorac Cardiovasc Surg* 1987; 94: 208-19.
4. Perier P, Deloche A, Chauvaud S, et al. Comparative evaluation of mitral valve repair and replacement with Starr, Bjork and porcine valve prosthesis. *Circulation* 1984; 70 (Suppl 1): 187-92.
5. Bradey LM, Midgley FM, Watson DC, et al. Anticoagulation therapy in children with mechanical prosthetic cardiac valves. *Am J Cardiol* 1985; 56: 533-5.
6. Deloche A, Jebara VA, Relland JYM, et al. Valve repair with Carpentier techniques. *J Thorac Cardiovasc Surg* 1990; 99: 990-1002.
7. Carpentier A. Cardiac valve surgery-the "French correction". *J Thorac Cardiovasc Surg* 1983; 86: 323-37.
8. Jebara VA, Mihaileanu S, Acar C, et al. Left ventricular outflow tract obstruction after mitral valve repair. Results of the sliding leaflet technique. *Circulation* 1993; 88 (part 2): 30-4.
9. Galloway AC, Colvin SB, Baumann FG, et al. Long-term results of mitral valve reconstruction with Carpentier techniques in 148 patients with mitral insufficiency. *Circulation* 1988; 78: 197-105.
10. Carpentier AF, Chauvaud S, Fabiani JN, et al. Reconstructive surgery of mitral valve incompetence: Ten year appraisal. *J Thorac Cardiovasc Surg* 1980; 79: 338-48.
11. Cosgrove DM III, Arcidi JM, Rodriguez L, Stewart WJ, Powell K, Thomas JD. Initial experience with the Cosgrove-Edwards annuloplasty system. *Ann Thorac Surg* 1995; 60: 499-504.
12. David TE, Komeda M, Pollick C, Burns RJ. Mitral valve annuloplasty. *Ann Thorac Surg* 1989; 47: 524-528.
13. Gillinov AM, Cosgrove DM, Blackstone EH, et al. Durability of mitral valve repair for degenerative disease. *J Thorac Cardiovasc Surg* 1998; 116: 734-43.
14. Aharon AS, Laks H, Drinkwater DC, et al. Early and late results of mitral valve repair in children. *J Thorac Cardiovasc Surg* 1994; 107: 1262-71.
15. Soyer R, Bouchart F, Bessou JP, et al. Mitral valve reconstruction: Long-term results of 120 cases. *Cardiovasc Surg* 1996; 4: 813-9.
16. Cohn LH, Couper GS, Arranki SF, Rizzo RJ, Kinchla NM, Collins JJ Jr. Long-term results of mitral valve reconstruction for regurgitation of the myxomatous mitral valve. *J Thorac Cardiovasc Surg* 1994; 107: 143-51.
17. Penkoske PA, Ellis FH, Alexander S, Watkins E. Results of valve reconstruction for mitral regurgitation secondary to mitral valve prolapse. *Am J Cardiol* 1985; 55: 735-8.
18. Duran CMG, Gometza B, De vol EB. Valve repair in rheumatic mitral valve disease. *Circulation* 1991; 84 (Suppl 3): 125-32.
19. Antunes MJ, Magalhaes MP, Colsen PR, Kinsley TH. Valvuloplasty for rheumatic mitral valve disease. A surgical challenge. *J Thorac Cardiovasc Surg* 1987; 94: 44-56.
20. Kumar AS, Rao PN. Mitral valve reconstruction: Intermediate term result in rheumatic mitral regurgitation. *J Heart Valve Dis* 1994; 3: 161-4.
21. Arkalgud Sampath Kumar, MCH, Pantula Narasinga Rao, MS, Anita Saxena, DM. Results of mitral valve reconstruction in children with rheumatic heart Disease. *Ann Thorac Surg* 1995; 60: 1044-7.
22. Skoularigis J, Sinovich V, Joubert G, Sareli P. Evaluation of long-term results of mitral valve repair in 254 young patients with rheumatic mitral valve regurgitation. *Circulation* 1994; 90: 167-74.
23. Prabhakar G, Kumar N, Gometza B, Galaa O, Al-Halees Z, Duran CMG. Triple valve operation in the young rheumatic patient. *Ann Thorac Surg* 1993; 55: 1492-6.
24. Chauvaud SM, Deleuze P, Perier PM, Carpentier AF. Failures in reconstructive mitral valve surgery. *Circulation* 1986; 74: 393.
25. Duran CM, Gometza B, Saad E. Valve repair in rheumatic mitral disease: An unsolved problem. *J Cardiac Surg* 1994; 9: 282-5.
26. Dall'Agata A, Taams MA, Fioretti PM, Roelandt JRTC, van Herwerden LA. Cosgrove-Edwards mitral ring dynamics measured with transeophageal three-dimensional echocardiography. *Ann Thorac Surg* 1998; 65: 485-90.
27. Timek TA, Dagum P, Lai DT, et al. Will a partial posterior annuloplasty ring prevent acute ischemic mitral regurgitation? *Circulation*, 2002; 106: I-33-39.

ผลการผ่าตัดซ่อมลิ้นหัวใจไมตรัล ในโรงพยาบาลจุฬาลงกรณ์

เสรี สิงหเสนีดกิจ, พบ*, สมนพร บุญยะรัตเวช, พบ**

ภูมิหลัง : การผ่าตัดแก้ไขโรคลิ้นหัวใจไมตรัลร้า ทำได้ 2 วิธี คือการเปลี่ยนลิ้นหัวใจ และการซ่อมลิ้นหัวใจ ลิ้นใจไมตรัล เป็นการผ่าตัดซึ่งบุญยะรัตเวชทำการเปลี่ยนลิ้นหัวใจ แต่มีข้อดีกว่า ได้แก่ ผู้ป่วยจะมีการทำงานของหัวใจด้านล่างท้ายที่ดีกว่า ความเสี่ยงต่อการติดเชื้อของลิ้นหัวใจ และความเสี่ยงต่อการเกิดลิ่มเลือด จากลิ้นหัวใจน้อยกว่า และผู้ป่วยไม่จำเป็นต้องรับประทานยาแก้เลือดแข็ง

การศึกษา : ผู้ป่วยด้วยโรคลิ้นหัวใจไมตรัลร้าได้รับการผ่าตัดซ่อมลิ้นหัวใจดังนี้ มกราคม 2543 ถึง พฤษภาคม 2545 เป็นจำนวน 43 ราย โดยศัลยแพทย์คนเดียวกัน สาเหตุของลิ้นหัวใจไมตรัลร้า ร้อยละ 51.2 เกิดจากการเสื่อมของลิ้นหัวใจ หรือเอ็นยีดของลิ้นหัวใจ, ร้อยละ 18.7 เกิดจากโรคกล้ามเนื้อหัวใจขาดเลือด, ร้อยละ 13.9 เกิดจากโรคหัวใจรูมาติก, ร้อยละ 11.6 เกิดจากการติดเชื้อของลิ้นหัวใจ และสาเหตุอื่นอีกร้อยละ 4.6 วิธีการผ่าตัดซ่อมลิ้นหัวใจ จำนวน 13 ราย การผ่าตัดทำโดยวิธีตัดลิ้นหัวใจ แผ่นหลังส่วนที่ยื่ดออก, จำนวน 11 ราย ทำการผ่าตัดโดยการย้ายที่ภาวะของเอ็นยีดลิ้นหัวใจ, ผู้ป่วย 10 ราย ได้รับการซ่อมลิ้นหัวใจโดยใช้แผ่นยึดเพื่อลดขนาดของวงของลิ้นหัวใจ, การผ่าตัดใช้เอ็นยีดลิ้นหัวใจจำนวน 3 ราย และโดยวิธีการเย็บปิดมุ่รออยด้วยของลิ้นหัวใจในผู้ป่วย 3 ราย

ผลการศึกษา : การตรวจการทำงานของลิ้นหัวใจด้วยเครื่องตรวจคลื่นเสียง พบร่วงภาวะหลังการผ่าตัดซ่อมลิ้นหัวใจไมตรัล ผู้ป่วยร้อยละ 95 ในพบว่ามีการรั่วของลิ้นหัวใจ ร้อยละ 5 ยังพบว่ามีการรั่วระดับปานกลาง มีผู้ป่วยเสียชีวิตในโรงพยาบาล จำนวน 1 ราย การติดตามผลดังนี้ 1-24 เดือน พบร่วงผู้ป่วยไม่มีอาการร้อยละ 90 และมีอาการหนืดอยเล็กน้อยร้อยละ 10

บทสรุป : จากผลการศึกษา พบร่วงการผ่าตัดซ่อมลิ้นหัวใจไมตรัล เป็นวิธีการผ่าตัดที่ปลอดภัยและได้ผลดี อย่างไรก็ตาม การติดตามผู้ป่วยในระยะยาวยังเป็นการศึกษาที่สำคัญ และมีความจำเป็น

คำสำคัญ : ลิ้นหัวใจไมตรัลร้า, การผ่าตัดซ่อมลิ้นหัวใจ, สาเหตุทางกายวิภาคของลิ้นหัวใจไมตรัล, วิธีการซ่อมลิ้นหัวใจไมตรัล

เสรี สิงหเสนีดกิจ, สมนพร บุญยะรัตเวช

จดหมายเหตุทางแพทย์ ๔ ๒๕๔๖; ๘๖ (ฉบับพิเศษ ๒): S350-S357

* หน่วยศัลยศาสตร์ทรวงอก, ภาควิชาศัลยศาสตร์,

** สาขาวิชาหัวใจและหลอดเลือด, ภาควิชาอายุรศาสตร์, คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพ ๔ ๑๐๓๓๐