

Serum N-Terminal Pro-Brain Natriuretic Peptide in Normal Thai Subjects

WATTANA LEOWATTANA, MD*,
YOSVI SUKUMALCHANTRA, MD***,
SERMKIT WATANAWAROON, MD***,
CHARUWAN KANGKAGATE, MS****,
KIERTIJAI BHURIPANYO, MD**

CHIRASAK SIRITHUNYANONT, MD**,
SOMSAK CHAISUPAMONKOLLARP, MD***,
BHANU CHIVATANAPORN, BSc****,
NITHI MAHANONDA, MD**,

Abstract

Aminoterminal portion of pro-brain natriuretic peptide (NT-proBNP) appears to be useful in the screening, diagnosis and prognosis of left ventricular dysfunction and congestive heart failure. The purpose of this study was to determine the values of serum NT-proBNP in normal Thai subjects compared with subjects from other countries. The design is a cross sectional study. The authors enrolled 243 consecutive healthy subjects (134 males and 109 females) from the checkup department of Bangkok Hospital for NT-proBNP measurement. The serum fraction was measured for NT-proBNP concentration by using Elecsys 2010 (Roche Diagnostics, Switzerland). The concentrations of NT-proBNP in normal Thai subjects were 33.30 ± 35.43 pg/ml. The NT-proBNP levels increased with age (age ≤ 50 years = 27.56 ± 28.77 pg/ml and age > 50 years = 47.20 ± 45.18 pg/ml, $p < 0.001$). Females usually have higher NT-proBNP than males (females = 40.42 ± 31.59 pg/ml, males = 27.51 ± 37.40 pg/ml, $p = 0.0045$). This study established the NT-proBNP concentrations in normal Thai subjects, which were not different from other studies. The authors suggested the normal cut-off values for subjects aged ≤ 50 years should be 100 pg/ml and the normal cut-off values for subjects aged > 50 years should be 200 pg/ml. The NT-proBNP assay could be used as a rule out marker for heart failure in patients and may trigger further cardiac investigation.

Key word : Normal Thai Subjects, NT pro-BNP, Age, Sex

LEOWATTANA W, SIRITHUNYANONT C, SUKUMALCHANTRA Y, et al
J Med Assoc Thai 2003; 86 (Suppl 1): S46-S51

* Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700,

** Bangkok Heart Institute,

*** Respiratory Center, Bangkok Hospital,

**** Laboratory Department, Bangkok Hospital, Bangkok 10320,

***** Her Majesty Cardiac Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

Congestive heart failure (CHF) is one of the major causes of morbidity and mortality in Thailand. It is primarily a disease of the elderly. In general practice heart failure is commonly misdiagnosed^(1, 2). The symptoms are non-specific and the clinical signs, although reasonably specific, are not at all sensitive. Consequently, even experienced physicians disagree on the diagnosis in individual cases, especially when the heart failure is mild⁽³⁾. Two studies in primary care have shown that many patients with breathlessness thought to have mild heart failure have been misdiagnosed^(4,5). The simplest confirmation of the diagnosis is provided by echocardiography, which is as reliable as other diagnostic methods such as radionuclide angiography. However, it is not readily available to general practitioners and precise measurement of left ventricular function is possible in only 58 per cent of patients because of obesity or pulmonary diseases. Recently, measurement of serum brain natriuretic peptide (BNP) levels has been suggested as a method of screening for left ventricular (LV) dysfunction⁽⁶⁻¹²⁾. The NT-proBNP, comprising 108 amino acids, is secreted mainly by the ventricle and in this process is cleaved into physiologically active BNP (77-108 amino acids) and the N-terminal fragment of proBNP (1-76 amino acids). In the pathophysiology of congestive heart failure (CHF), BNP participates in adaptive responses to hemodynamic alterations of heart failure^(13,14). The increased BNP level in patients with LV dysfunction has generated considerable interest in its diagnostic and prognostic properties in CHF patients. The purpose of this study was to determine the concentrations of NT-proBNP in normal Thai subjects and to compare them with subjects from other countries.

MATERIAL AND METHOD

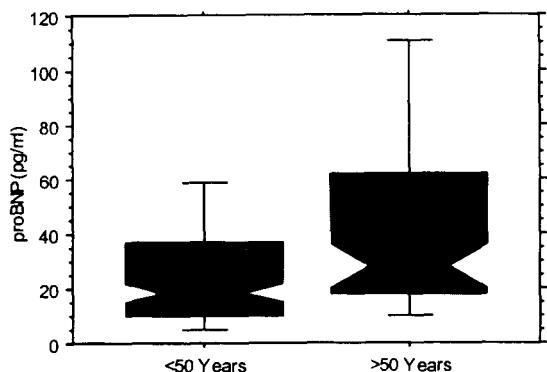
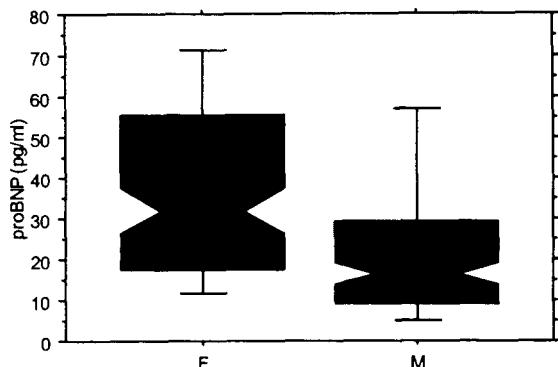
The hospital ethical committee approved the study. The authors enrolled 243 consecutive healthy subjects (134 males and 109 females, age range: 16-87 years, mean: 42.8 years) who presented for their

annual checkup and had no history of any cardiovascular, respiratory illness and other risk factors for CHF. Informed consents were obtained from all subjects.

Serum NT-proBNP assay

Blood samples were taken and centrifuged within 30 minutes. The serum fraction was separated and stored at -20°C until analysis. Serum NT-proBNP concentrations were measured by using Elecsys 2010 proBNP reagent kit (Roche Diagnostics, Switzerland). Elecsys proBNP reagent contains polyclonal antibodies that recognized epitopes located in the N-terminal part of proBNP. The total coefficient of variation (within run and between run) of our laboratory was less than 5 per cent.

Statistical analysis



All data were presented as the mean \pm SD or percentage as appropriate. Categorical variables were compared by using chi-square test; continuous variables were compared by using independent student *t*-test or ANOVA. A two tailed *p*-value < 0.05 was considered significant. Statistical analysis was performed using SPSS version 10.0.

RESULTS

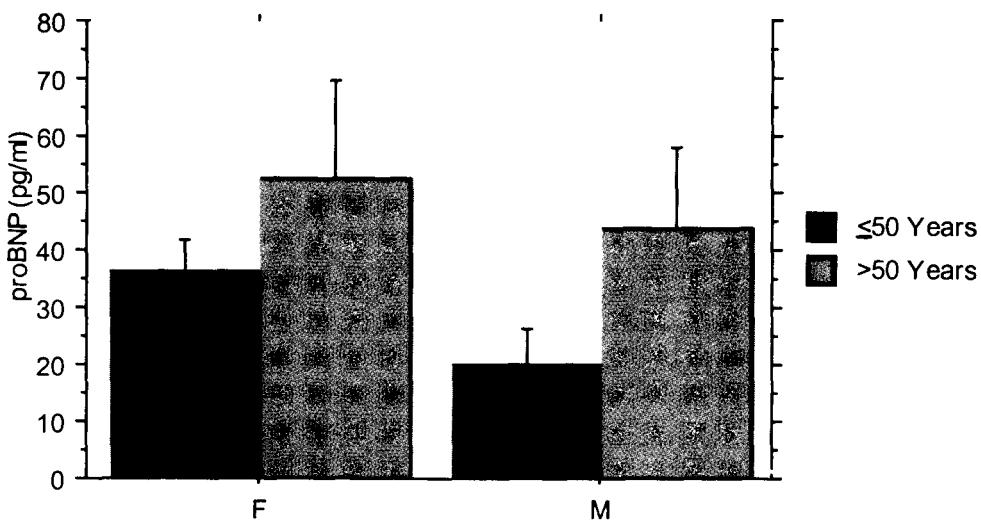

Serum NT-proBNP concentrations in 243 healthy subjects ranged between 5.00 and 272.70 pg/ml (mean: 33.30 ± 35.43 pg/ml). The 95th percentiles of NT-proBNP for all subjects, males and females were 104.16, 102.29, and 103.60 pg/ml respectively. The mean and standard deviation of serum NT-proBNP levels with different age and sex are shown in Table 1. Serum NT-proBNP levels in females were significantly higher than in males (*p* = 0.0045) and in age \leq 50 years were significantly lower than in age $>$ 50 years (*p* < 0.0001, Fig. 1). Fig. 2 shows the bar chart of NT-proBNP concentrations compared with males and females in different age groups. Fig. 3 shows the correlation between NT-proBNP and increasing age.

Table 1. Serum NT-proBNP concentrations with different age and sex.

	Sex \leq 50 years (pg/ml)		n	> 50 years (pg/ml)		n	All (pg/ml)		n
	mean \pm SD	95th		mean \pm SD	95th		mean \pm SD	95th	
Females	36.26 ± 24.59	85.18	81	52.44 ± 44.69	141.85	28	40.42 ± 31.59	103.60	109
Males	19.81 ± 30.09	79.99	91	43.79 ± 45.69	135.17	43	27.51 ± 37.40	102.29	134
All	27.56 ± 28.77	85.10	172	47.20 ± 45.17	137.54	71	33.30 ± 35.43	104.16	243

A**B**

Fig. 1. Box plot of NT-proBNP compares between A) males and females B) aged ≤ 50 years and aged > 50 years.

Fig. 2. Bar chart of NT-proBNP compares males and females of different age groups.

DISCUSSION

Although several studies on assays for BNP in select patient groups have been published, there is little data on the performance characteristics of an assay for NT-proBNP especially in Asian Countries (6,10,15-18). The serum NT-proBNP, with no known biological function, has been found to circulate at higher concentrations than BNP and may represent

cardiac status over longer periods. This assay was easy to perform by a fully automated instrument and the serum sample did not need any additive substance. This high stability in whole blood allows the office-based physician to draw blood and send it to the reference laboratory for NT-proBNP measurement without the need for special precautions(13,19,20).

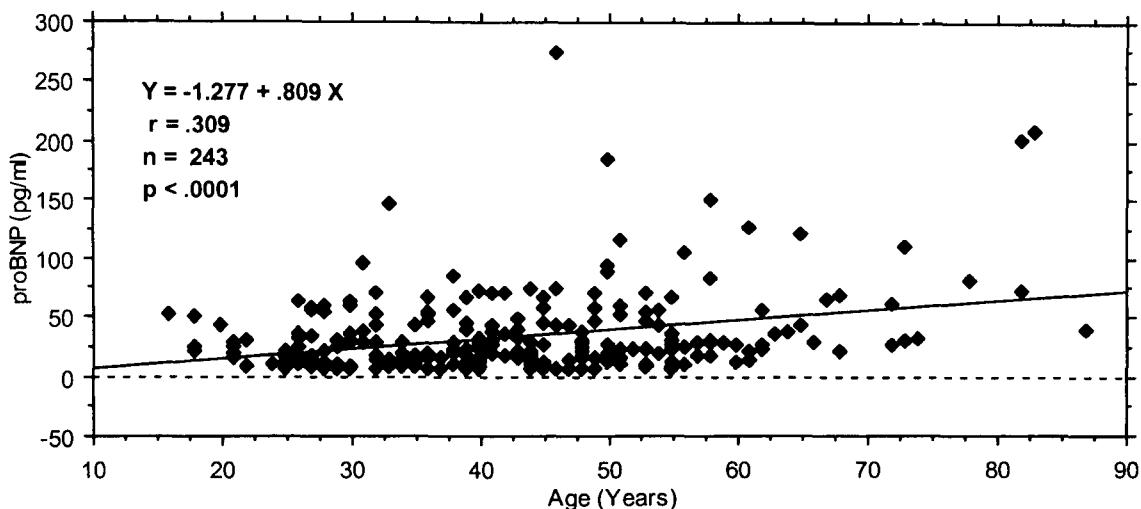


Fig. 3. Correlation of serum NT-proBNP with increasing age.

When the authors compared the results with the results from other investigators it was found that these finding were consistent with previous observations. In the year 2000, Smith et al reported the cut-off point of 158.2 pg/ml of BNP to rule out left ventricular systolic dysfunction from normal healthy subjects with a 92 per cent sensitivity(21). From the study of Hobbs et al in 2002, the cut-off values for diagnosis of heart failure was 304.5 pg/ml of NT-proBNP with 100 per cent sensitivity, 70 per cent specificity, 7 per cent positive predictive value and 100 per cent negative predictive value(22). Maisel et al demonstrated that the diagnosis accuracy of BNP at a cut-off of 100 pg/ml was 83.4 per cent. Negative predictive value of BNP at levels of less than 50 pg/ml was 96 per cent(15). From our point of view, it is suggested that the cut-off value for both males and females aged \leq 50 years should be 100 pg/ml and the cut-off value for both males and females aged $>$ 50 years

should be 200 pg/ml. These cut-off values may be suitable for Thai subjects to rule out heart failure patients from normal healthy persons particularly in a community setting. The very high negative predictive values and corresponding low likelihood ratios of a negative result suggest that this assay would be used only to rule out or as an exclusion test. Elevated concentrations of NT-proBNP should, therefore, trigger further cardiac investigation. Moreover, an NT-pro BNP measurement obtained within 1 or 2 hours may be useful in establishing or excluding the diagnosis of heart failure in patients with acute dyspnea.

SUMMARY

Serum concentrations of NT-proBNP could be used effectively as an initial test in a community screening programme and possibly, using the cut-off point, as a means of ruling out heart failure.

REFERENCES

1. Remes J, Miettinen H, Reunanan A, Pyorala K. Validity of clinical diagnosis of heart failure in primary health care. *Eur Heart J* 1991; 12: 315-21.
2. Wheeldon NM, MacDonald TM, Flucker CJ, McKendrick AD, McDevitt DG, Struthers AD. Echocardiography in chronic heart failure in the community. *Q J Med* 1993; 86: 17-23.
3. Hlatky MA, Fleg JL, Hinton PC, et al. Physician practice in the management of congestive heart failure. *J Am Coll Cardiol* 1986; 8: 966-70.
4. Albin G, Rahko PS. Comparison of echocardiographic quantitation of left ventricular ejection fraction to radionuclide angiography in patients with regional wall motion abnormalities. *Am J Cardiol* 1990; 65: 1031-2.
5. Francis CM, Caruana L, Kearney P, et al. Open access echocardiography in management of heart failure in the community. *BMJ* 1995; 310: 634-6.
6. Cowie MR, Struthers AD, Wood DA, et al. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. *Lancet* 1997; 350: 1349-53.
7. Davidson NC, Naas AA, Hanson JK, Kennedy NS, Coutie WJ, Struthers AD. Comparison of atrial natriuretic peptide B-type natriuretic peptide, and N-terminal proatrial natriuretic peptide as indicators of left ventricular systolic dysfunction. *Am J Cardiol* 1996; 77: 828-31.
8. McDonagh TA, Cunningham AD, Morrison CE, et al. Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population. *Heart* 2001; 86: 21-6.
9. Yamamoto A, Mankumo M, Kawaguchi A, Nishizawa H, Toyoshima H, Kangawa K. Leg edema, ST-T abnormalities, and high BNP values are important signs of heart failure in the elderly. *Arch Gerontol Geriatr* 2001; 33: 37-52.
10. Masson S, Vago T, Baldi G, et al. Comparative measurement of N-terminal pro-brain natriuretic peptide and brain natriuretic peptide in ambulatory patients with heart failure. *Clin Chem Lab Med* 2002; 40: 761-3.
11. Luchner A, Brockel U, Muscholl M, et al. Gender-specific differences of cardiac remodeling in subjects with left ventricular dysfunction: A population-based study. *Cardiovasc Res* 2002; 53: 720-7.
12. Kato J, Kitamura K, Uemura T, et al. Plasma levels of adrenomedullin and atrial and brain natriuretic peptides in the general population: Their relations to age and pulse pressure. *Hypertens Res* 2002; 25: 887-92.
13. Hunt PJ, Yandle TG, Nicholls MG, Richards AM, Espiner EA. The amino-terminal portion of pro-brain natriuretic peptide (Pro-BNP) circulates in human plasma. *Biochem Biophys Res Commun* 1995; 214: 1175-83.
14. Sudoh T, Minamino N, Kangawa K, Matsuo H. Brain natriuretic peptide-32: N-terminal six amino acid extended form of brain natriuretic peptide identified in porcine brain. *Biochem Biophys Res Commun* 1988; 155: 726-32.
15. Maisel A. B-type natriuretic Peptide measurements in diagnosing congestive heart failure in the dyspneic emergency department patient. *Rev Cardiovasc Med* 2002; 3 (Suppl 4): S10-7.
16. Mir TS, Marohn S, Laer S, Eiselt M, Grollmus O, Weil J. Plasma concentrations of N-terminal pro-brain natriuretic peptide in control children from the neonatal to adolescent period and in children with congestive heart failure. *Pediatrics* 2002; 110: e76.
17. Morrison LK, Harrison A, Krishnaswamy P, Kazanegra R, Clopton P, Maisel A. Utility of a rapid B-natriuretic peptide assay in differentiating congestive heart failure from lung disease in patients presenting with dyspnea. *J Am Coll Cardiol* 2002; 39: 202-9.
18. Tabbibizar R, Maisel A. The impact of B-type natriuretic peptide levels on the diagnoses and management of congestive heart failure. *Curr Opin Cardiol* 2002; 17: 340-5.
19. Fleming SM, O'Gorman T, O'Byrne L, Grimes H, Daly KM, Morrison JJ. Cardiac troponin I and N-terminal pro-brain natriuretic peptide in umbilical artery blood in relation to fetal heart rate abnormalities during labor. *Pediatr Cardiol* 2001; 22: 393-6.
20. Richards AM, Nicholls MG, Yandle TG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: new neurohormonal predictors of left ventricular function and prognosis after myocardial infarction. *Circulation* 1998; 97: 1921-9.
21. Smith MW, Espiner EA, Yandle TG, Charles CJ, Richards AM. Delayed metabolism of human brain natriuretic peptide reflects resistance to neutral endopeptidase. *J Endocrinol* 2000; 167: 239-46.
22. Hobbs FD, Davis RC, Roalfe AK, Hare R, Davies MK, Kenkre JE. Reliability of N-terminal pro-brain natriuretic peptide assay in diagnosis of heart failure: Cohort study in representative and high risk community populations. *BMJ* 2002; 324: 1498.

ชีรั่มเอ็นเทอร์มินัลโปรเบรนแนททรีติกเป็นไทด์ (เอ็นที-โปรบีเอ็นพี) ในคนไทยสุขภาพดี

วัฒนา เลี้ยวัฒนา, พบ*, จีระศักดิ์ สิริธัญญานนท์, พบ**, ยศวรร สุขมาลจันทร์, พบ***, สมศักดิ์ ชัยศุภมงคลลักษ, พบ***, เสริมกิจ วัฒนาวารุณ, พบ***, ภาณุ จิวะธนพร, วทบ****, จากรุวรรณ คั้งคงเกดุ, วทบ*****, นิติ มหานนท์, พบ**, เกียรติชัย ภูริปัญญา, พบ**

อัมโนเทอร์มินัลของโปรเบรนแนททรีติกเป็นไทด์ (เอ็นที-โปรบีเอ็นพี) สามารถนำมาใช้ในการตรวจคัดกรองให้การวินิจฉัย และพยากรณ์ โรคการทำงานหัวใจห้องข่ายผิดปกติและโรคหัวใจล้มเหลวได้ดี แต่เนื่องจากข้อมูลที่เกี่ยวข้องกับเอ็นที-โปรบีเอ็นพี ในประเทศไทยยังมีอยู่น้อยมากคณะผู้วิจัยจึงมีต้นประสังค์ที่จะศึกษาถึงระดับ เอ็นที-โปรบีเอ็นพี ในประเทศไทยเพื่อเปรียบเทียบกับประเทศไทยในประเทศอื่น ๆ และเพื่อเป็นข้อมูลพื้นฐานสำหรับประเทศไทยอีกด้วย คณะผู้วิจัยได้ทำการศึกษาผู้ที่มีสุขภาพดีที่มาตรวจเช็คร่างกายประจำปีที่หน่วยตรวจสุขภาพ โรงพยาบาลกรุงเทพจำนวน 243 ราย (ชาย 134 รายและหญิง 109 ราย) ชีรั่ม เอ็นที-โปรบีเอ็นพี ตรวจโดยใช้เครื่อง อิเล็คชัล 2010 (โซ่ ไดแอกโนสติก, ลิวิชอร์แลนด์) พนบว่า ค่าชีรั่ม เอ็นที-โปรบีเอ็นพี เพิ่มสูงขึ้นตามอายุที่เพิ่มขึ้น (อายุน้อยกว่าหรือเท่ากับ 50 ปี = 27.56 ± 28.77 pg/ml และอายุมากกว่า 50 ปี = 47.20 ± 45.18 pg/ml, $p < 0.0001$) เพศหญิงจะมีค่าชีรั่ม เอ็นที-โปรบีเอ็นพี สูงกว่าในเพศชาย (เพศหญิง = 40.42 ± 31.59 pg/ml ส่วนเพศชาย = 27.51 ± 37.40 pg/ml, $p = 0.0045$) จากการศึกษาในครั้นนี้พบว่า ค่าชีรั่ม เอ็นที-โปรบีเอ็นพี ในคนไทยไม่แตกต่างกับในประเทศไทยโดยการใช้ค่า cutoff สำหรับผู้ป่วยที่มีอายุน้อยกว่า หรือเท่ากับ 50 ปีที่ 100 pg/ml และสำหรับผู้ป่วยที่มีอายุมากกว่า 50 ปีที่ 200 pg/ml โดยควรใช้ค่าชีรั่ม เอ็นที-โปรบีเอ็นพี ในการ rule out สำหรับผู้ป่วยหัวใจวายในการดูแลรักษาแบบบุคคลและจะเป็นสิ่งกระตุ้นให้ทำการค้นหาสาเหตุของภาวะหัวใจ-วายต่อไป

คำสำคัญ : ประเทศไทย, เอ็นที-โปรบีเอ็นพี, อายุ, เพศ

วัฒนา เลี้ยวัฒนา, จีระศักดิ์ สิริธัญญานนท์, ยศวรร สุขมาลจันทร์, และคณะ จตุมหาเทดุทางแพทย์ ฯ 2546; 86 (ฉบับพิเศษ 1): S46-S51

- * ภาควิชาแพทย์วิทยาคลินิก, คณะแพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมหิดล, กรุงเทพ ฯ 10700
- ** ศูนย์หัวใจกรุงเทพ,
- *** ศูนย์โรคปอดกรุงเทพ,
- **** ห้องปฏิบัติการกลาง, โรงพยาบาลกรุงเทพ, กรุงเทพ ฯ 10320
- ***** ศูนย์โรคหัวใจสมเด็จพระบรมราชินีนาถ, คณะแพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมหิดล, กรุงเทพ ฯ 10700