

# Medication Errors at Queen Sirikit National Institute of Child Health

VARAPORN SANGTAWESIN, MD\*,  
PANIDA SRISAN, MD\*,  
PORNSRI INGCHAREONSUNTHORN, MSC\*\*

WIBOON KANJANAPATTANAKUL, MD\*,  
WIPAJAREE NAWASIRI, BSC\*\*,

## Abstract

**Background :** In the past two years, medication errors have been recognized as having been unacceptably high among hospitalized patients.

**Objective :** To determine the incidence and type of medication errors, severity of events, patient outcomes and categories of drugs involved in the largest pediatric hospital in Thailand over a fifteen-month-period.

**Patients and Method :** Retrospective review of in-patient medication errors documented in standard reporting forms from September 2001 to November 2002. Main outcome measure was the incidence of errors reported.

**Results :** Medication errors occurred in 1 per cent of admissions (322 errors of 32,105 admissions). The most common error type was prescription error (35.40%). The majority of errors were detected and prevented before the drugs were administered (76.71%). There was only one case of permanent brain damage; no deaths occurred in the study period. The most common group of drugs involved in medication errors was antibiotics and the most common route of administration was oral.

**Conclusion :** Medication errors are not uncommon. There is a need to change the behaviors of recognizing and acknowledging clinical errors, including drug errors. Careful review of errors highlights the many opportunities to change how drug errors are addressed and to make them less likely.

**Key word :** Medication Errors, Queen Sirikit National Institute of Child Health

SANGTAWESIN V, KANJANAPATTANAKUL W,  
SRISAN P, NAWASIRI W, INGCHAREONSUNTHORN P  
J Med Assoc Thai 2003; 86 (Suppl 3): S570-S575

\* Department of Pediatrics,

\*\* Department of Pharmacology, Queen Sirikit National Institute of Child Health, Bangkok 10400, Thailand.

Medication errors are important causes of iatrogenic disease in hospitalized patients. While many errors are minor, those associated with morbidity and mortality increase health care costs and can be a source of litigation. Medical malpractice claims may deleteriously affect long-term physician-patient relationships, such as lost trust. The impact of an adverse drug event and subsequent malpractice claims can be emotionally and professionally devastating for physicians<sup>(1-4)</sup>. Most of the published information documenting the incidence and type of medication errors occurring in patients admitted in hospitals come from North America<sup>(1-5)</sup>. A medication errors reporting system has been in place at Queen Sirikit National Institute of Child Health for 2 years. During this time, the Hospital Risk Management Committee has reviewed aggregated error data and promulgated a number of changes in an attempt to reduce errors. In the present study, the authors reviewed the incidence and type of errors reported for a 15-month-period.

## SUBJECTS AND METHOD

This study reviewed data collected at Queen Sirikit National Institute of Child health (QSNICH), Bangkok. The institute is one of the largest pediatric teaching hospitals in Thailand with 453 inpatient beds including 8 pediatric intensive care and 8 neonatal intensive care beds.

The medication error reporting policy was established at QSNICH in December 2000 with the first report beginning in March 2001. The medication error policy was applied to all patient wards and was mandated for all medical personnel. Reports were collected in standardised forms. All error reports were investigated by the staff of the department. The reports were submitted to the Hospital Risk Management Committee and underwent a rigorous monthly multidisciplinary review. The error report form had been revised several times to classify the type and severity of errors to monitor the situation and immediately prevent further error. The data were presented to all staff and residents. A double check policy was introduced in various modalities. Double checks of drug administration began with intravenous medication, medications with serious adverse reactions and medications for which errors were frequently reported. Handbooks were published for medical personnel.

Errors were classified into categories including type of errors (prescription, order processing, dispensing, administration and patient noncompliance) and class of drugs involved. Severity ranking was

based on a numerical scale of 0-6 and reflected patient outcome<sup>(6,7)</sup> as specified below.

- Level 0 : No medication error occurred (potential errors would be classified here).
- Level 1 : An error occurred that did not result in patient harm.
- Level 2 : An error occurred that resulted in the need for increased patient monitoring but no change in vital signs and no patient harm.
- Level 3 : An error occurred that resulted in the need for increased patient monitoring with a change in vital signs but no ultimate patient harm, or any error that resulted in the need for increased laboratory monitoring.
- Level 4 : An error occurred that resulted in the need for treatment with another drug or an increased length of stay or that affected patient participation in an investigational drug study.
- Level 5 : An error occurred that resulted in permanent patient harm.
- Level 6 : An error occurred that resulted in patient death.

In the present study, the authors reviewed all errors reported from September 2001 to November 2002.

## Statistical method

Data were summarized using standard descriptive methods. Error rates were calculated using aggregated monthly admission rates.

## RESULTS

There were a total of 32,105 hospital admissions from September 2001 to November 2002 with 322 errors reported during this period, giving an overall error rate accounting for 1 per cent of admissions. The incidence varied little over the 15 months (Table 1).

Table 2 lists the types of errors. The most frequent one was prescription error. For the subtype of errors, the wrong dose was the most common.

Fig. 1 shows the details of the error rate in each month. As time went by, the authors found that the prescription and order processing errors decreased. Dispensing errors strikingly increased in October 2002.

Severity classification is shown in Table 3. The majority of errors were detected and prevented before the drugs were administered. No deaths occurred during the study.

Table 1. Incidence of medication errors.

| Year  | Month     | Admissions | Errors | Incidence (%) |
|-------|-----------|------------|--------|---------------|
| 2001  | September | 2,369      | 23     | 0.97          |
|       | October   | 2,484      | 47     | 1.89          |
|       | November  | 2,288      | 22     | 0.96          |
|       | December  | 2,375      | 21     | 0.88          |
|       | January   | 2,494      | 27     | 1.08          |
|       | February  | 2,070      | 21     | 1.01          |
|       | March     | 2,235      | 26     | 1.16          |
|       | April     | 1,755      | 23     | 1.31          |
|       | May       | 1,495      | 21     | 1.40          |
|       | June      | 1,969      | 15     | 0.76          |
|       | July      | 2,215      | 18     | 0.81          |
|       | August    | 2,101      | 13     | 0.62          |
| 2002  | September | 2,121      | 11     | 0.52          |
|       | October   | 2,282      | 24     | 1.05          |
|       | November  | 1,852      | 10     | 0.53          |
| Total |           | 32,105     | 322    | 1.00          |
| Mean  |           | 2,140.33   | 21.47  |               |
| SD    |           | 279.19     | 8.79   |               |

Table 2. Types of medication errors.

| Types                                            | N   | %     |
|--------------------------------------------------|-----|-------|
| Prescription error (doctor)                      | 114 | 35.40 |
| Wrong dose                                       | 83  | 25.78 |
| Wrong choice                                     | 12  | 3.73  |
| Known allergy                                    | 2   | 0.62  |
| Others (frequency, drug interaction, drug route) | 17  | 5.28  |
| Order processing error                           | 46  | 14.29 |
| Ward                                             | 42  | 13.04 |
| Pharmacy                                         | 4   | 1.24  |
| Dispensing error (pharmacy)                      | 112 | 34.78 |
| Administrative error                             | 49  | 15.22 |
| Wrong time                                       | 7   | 2.17  |
| Omission error                                   | 4   | 1.24  |
| Wrong strength                                   | 6   | 1.86  |
| Unauthorized drug                                | 0   | 0     |
| Wrong patient                                    | 8   | 2.48  |
| Extra dose                                       | 12  | 3.73  |
| Wrong route                                      | 0   | 0     |
| Wrong dosage form                                | 12  | 3.73  |
| Patient non-compliance                           | 1   | 0.31  |
| Total                                            | 322 | 100   |

For the evaluation of the drug categories and route of administration, 10 errors were excluded because of incomplete data, so the total number of errors was 312. The most common group of drug involved in medication errors was antibiotics and the

most common route of error was oral. Categories of the drug and routes of administration involved in the errors are shown in Table 4.

## DISCUSSION

In the present study, the authors reviewed the medication errors reported in in-patients at Queen Sirikit National Institute of Child Health during a 15-month-period, from September 2001 to November 2002. The Institute is the largest hospital for children in Thailand and is one of the largest centers for pediatric residency training. The total number of reports was 322 accounting for 1 per cent of admissions. This incidence is higher than that reported by Ross from the United Kingdom(8) (0.15%) but is lower than in the studies of Brennan, Bond and Kaushal from the United States of America (3.7%, 5.07% and 5.7% respectively)(5,9,10). Fortunately, in the present study 247 (76.71%) errors were intercepted (level 0) and corrected before the drugs were administered.

Prescription error is the most common type of error as in all other reports(2,5,8,10). The authors believe that the reason is, that in these errors there is definite documented evidence together with a complete double-check system by pharmacists or nurses for every prescription.

Dosing error is the most common subtype of errors as in all other reports(2,8,10,11) because

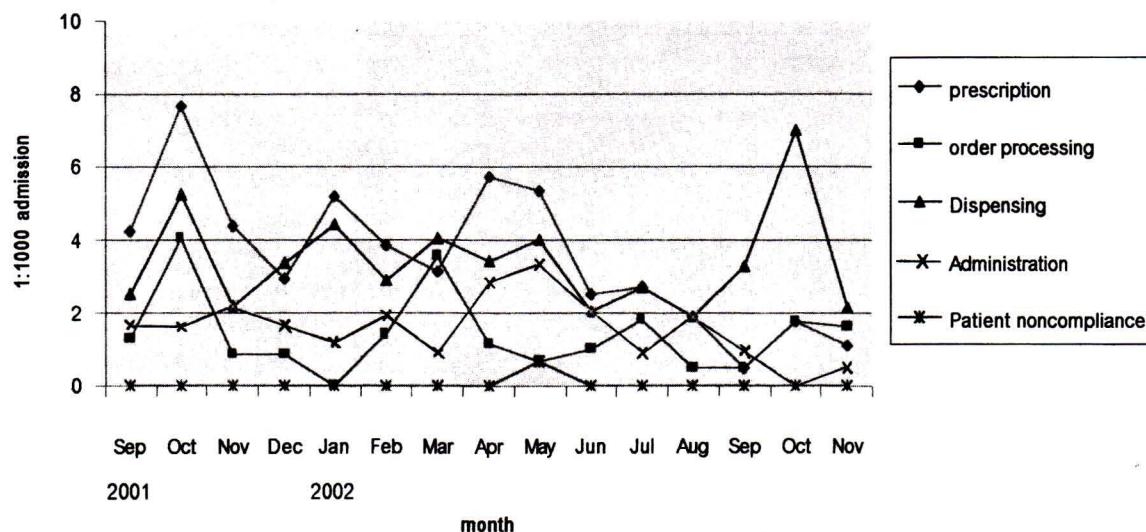



Fig. 1. Frequency of types of errors each month.

Table 3. Severity level.

| Level | Errors (N) | %     |
|-------|------------|-------|
| 0     | 247        | 76.70 |
| 1     | 47         | 14.60 |
| 2     | 15         | 4.66  |
| 3     | 11         | 3.42  |
| 4     | 1          | 0.31  |
| 5     | 1          | 0.31  |
| 6     | 0          | 0     |
| Total | 322        | 100   |

pediatric drug prescription requires calculation using weight or body surface area and is prone to human error. The importance of checking calculations and avoiding decimal point errors where possible has been emphasized.

Prescription and order processing errors decreased significantly with time. The authors believe that this resulted from their intervention.

Dispensing errors which strikingly increased in October 2002 may be explained by the increased number of in-patient admissions while the number of pharmacists decreased during this period.

In the present report most of the errors were detected and prevented before the drugs were admi-

nistered (level 0). This is consistent with other reports (2,7,8,12) but is much less than that reported by Phillips et al(13). The only serious adverse effects in the present study occurred on 2 occasions. The first one was the intravenous form of methotrexate administered via intrathecal route producing convulsion and permanent patient harm. The second adverse event was a 10 times excessive dosage of intravenous diphenhydantin producing agitation with the need for treatment. There was no death in the present report. In contrast, Phillips et al(13) reported errors resulting in patient death and which involved administering an improper dose, wrong drug or using the wrong route (40.9, 16 and 9.5%, respectively). Improper placement of the decimal point was the most common error in making calculations in the present study as in the study by Phillips et al(13,14).

The most common drug involved in medication error was antibiotics. This is also consistent with other studies(1,2,8-10,15,16). The reasons for this may be that they are the most frequent drugs used for in-patients and the variety of antibiotics with similar brand names (e.g. cefotaxime and cefuroxime), with different routes, dosage and frequency of administration. Also, the physicians prescribing these are often pediatric residents in training rather than experienced pediatricians.

**Table 4. Drug categories and routes of administration of medical errors.**

| Drug categories                  | Number and per cent of errors for each route of administration |       |       |      |      |       |            |      |         |     |
|----------------------------------|----------------------------------------------------------------|-------|-------|------|------|-------|------------|------|---------|-----|
|                                  | Total                                                          |       | IV/IM |      | Oral |       | Inhalation |      | Topical |     |
|                                  | N                                                              | %     | N     | %    | N    | %     | N          | %    | N       | %   |
| 1. Antibiotics                   | 96                                                             | 30.77 | 38    | 30.4 | 57   | 32.76 | 0          | 0    | 1       | 20  |
| 2. Fluid electrolyte & mineral   | 44                                                             | 14.10 | 29    | 23.2 | 15   | 8.62  | 0          | 0    | 0       | 0   |
| 3. Cardiovascular drug           | 28                                                             | 8.97  | 13    | 10.4 | 15   | 8.62  | 0          | 0    | 0       | 0   |
| 4. Gastrointestinal              | 26                                                             | 8.33  | 5     | 4    | 21   | 12.07 | 0          | 0    | 0       | 0   |
| 5. Respiratory                   | 20                                                             | 6.41  | 3     | 2.4  | 14   | 8.04  | 3          | 37.5 | 0       | 0   |
| 6. Analgesic + pyretic + inflame | 19                                                             | 6.09  | 0     | 0    | 18   | 10.34 | 0          | 0    | 1       | 20  |
| 7. CNS                           | 18                                                             | 5.77  | 9     | 7.2  | 9    | 5.17  | 0          | 0    | 0       | 0   |
| Tranquilizer + antidepressant    | 4                                                              | 1.28  | 0     | 0    | 4    | 2.30  | 0          | 0    | 0       | 0   |
| Hypnotic + sedative              | 10                                                             | 3.21  | 9     | 7.2  | 1    | 0.57  | 0          | 0    | 0       | 0   |
| Anticonvulsant                   | 4                                                              | 1.28  | 0     | 0    | 4    | 2.30  | 0          | 0    | 0       | 0   |
| 8. Corticosteroid + hormone      | 16                                                             | 5.13  | 6     | 4.8  | 4    | 2.30  | 5          | 62.5 | 1       | 20  |
| 9. Antineoplastic                | 14                                                             | 4.49  | 11    | 8.8  | 3    | 1.72  | 0          | 0    | 0       | 0   |
| 10. Vitamin                      | 12                                                             | 3.85  | 4     | 3.2  | 8    | 4.60  | 0          | 0    | 0       | 0   |
| 11. Antiparasitic                | 5                                                              | 1.60  | 0     | 0    | 4    | 2.30  | 0          | 0    | 1       | 20  |
| 12. Blood component              | 2                                                              | 0.64  | 2     | 1.6  | 0    | 0     | 0          | 0    | 0       | 0   |
| 13. Others                       | 12                                                             | 3.85  | 5     | 4    | 6    | 3.45  | 0          | 0    | 1       | 20  |
| Total                            | 312                                                            | 100   | 125   | 100  | 174  | 100   | 8          | 100  | 5       | 100 |

## SUMMARY

Medication errors can occur in all stages of patient care. Physicians have to be alert to this fact and help to reduce the incidence and severity of medication errors as much as possible. This can be accomplished by improving the knowledge of medical personnel in a variety of ways. Good communication, using a documented order form instead of verbal ordering, using computerized physician order entry with clinical decision support (e.g. drug-allergy checks, drug-dose checks, drug-drug interaction checks etc),

increasing carefulness (during drug calculation, in-patient identification, etc), a good patient/personnel ratio, full-time doctors, ward-based clinical pharmacists and a double-check policy are all important means to reduce medication errors.

## ACKNOWLEDGEMENTS

The authors wish to thank the nurses, pharmacists, physicians and other personnel who helped with this study.

(Received for publication on May 14, 2003)

## REFERENCES

- Rotschild JM, Federico FA, Gandhi TK, et al. Analysis of medication-related malpractice claims: Cause, preventability, and costs. *Arch Intern Med* 2002; 162: 2414-20.
- Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential adverse drug events: Implications for prevention. ADE prevention Study group. *JAMA* 1995; 274: 29-34.
- Cullen DJ, Sweitzer BJ, Bates DW, Budrick E, Edmondson A, Leape LL. Preventable adverse drug events in hospitalized patients: Comparative study of intensive care units and general care units. *Critical Care Med* 1997; 25: 1289-97.
- Classen DC, Pestotnik SL, Evans RS, Lloyd JF, Bruke JP. Adverse drug events in hospitalized patients: Excessive length of stay, extra cost and attributable mortality. *JAMA* 1997; 277: 301-6.
- Breman TA, Leape LL, Laird NM, et al. Incidence of adverse events and negligence in hospitalized patients. Result of the Harvard Medical Practice Study I. *N Engl J Med* 1991; 324: 370-6.
- Demers RF, Moore TD. Pharmacy's role in quality

assurance of medication administration. *Top Hosp Pharm Manage* 1988; 7: 45-54.

7. Hartwig SC, Denger SD, Schneider PJ. A severity indexed, incident report based medication error reporting program. *Am J Hosp Pharm* 1991; 48: 2611-6.

8. Ross LM, Wallace J, Parton JY. Medication errors in pediatric teaching hospital in UK: five years operational experience. *Arch Dis Child* 2000; 83: 492-7.

9. Bond CA, Raehl CL, Franke T. Medication errors in United States hospitals. *Pharmacotherapy* 2001; 21: 1023-36.

10. Kaushal R, Bates DW, Landrigan C, et al. Medication errors and adverse drug events in pediatric inpatients. *JAMA* 2001; 285: 2114-20.

11. Buurma H, de Smet PA, van den Hoff OP, Egberts AC. Nature, frequency and determinants of prescription modifications in Dutch community phar-

macies. *Br J Clin Pharmacol* 2001; 52: 85-91.

12. Merino BL, Reinhardt K, Eichelberger WJ, Steingard R. Prevalence of errors in a pediatric hospital medication system: Implications for error proofing. *Outcomes Manag Nurs Pract* 2000; 4: 129-35.

13. Phillips J, Beam S, Brinker A, et al. Retrospective analysis of mortalities associated with medication errors. *Am J Health Syst Pharm* 2001; 58: 185-41.

14. Raju TNK, Kecske S, Thornton JP, Perry M, Feldman S. Medication errors in neonatal and pediatric intensive care units. *Lancet* 1989; 2: 374-6.

15. Leape LL, Brennan TA, Laird N, et al. The nature of adverse events in the hospitalized. Result of the Harvard Medical Practice Study II. *N Engl J Med* 1991; 324: 377-84.

16. Soumerai SB, Ross-Degan D. Drug prescribing in pediatrics: Challenges for quality improvement. *Pediatrics* 1990; 86: 782-4.

## ความผิดพลาดในการให้ยาในสถาบันสุขภาพเด็กแห่งชาติมหาราชินี

วรภรณ์ แสงหัวสิน, พบ\*, วิบูลย์ กาญจนพัฒนกุล, พบ\*,  
พนิดา ศรีสันต์, พบ\*, วิภาวดี นาสิริ, ภบ\*\*, พรศรี อิงเจริญสุนทร, ภม\*\*

**บทนำ :** ความผิดพลาดทางยาเป็นอุบัติการณ์ความเสี่ยงที่มีการรายงานมากที่สุดในระยะ 2 ปีที่ผ่านมาในสถาบันสุขภาพเด็กแห่งชาติมหาราชินี

**วัตถุประสงค์ :** เพื่อศึกษาอุบัติการณ์ ประเภทของความผิดพลาด ระดับความรุนแรงของความผิดพลาดที่เกิดขึ้นกับผู้ป่วย และชนิดของยาที่เกิดความผิดพลาด

**ผู้วิเคราะห์และวิธีการศึกษา :** เป็นการศึกษาข้อมูลโดยการทบทวนรายงานอุบัติการณ์ความผิดพลาดทางยาของผู้ป่วยใน และการค้นหาข้อมูลเพิ่มเติมส่วนของรายงานที่ไม่สมบูรณ์ ตั้งแต่เดือนกันยายน 2544 ถึงเดือนพฤษภาคม 2545

**ผลการศึกษา :** พนบอุบัติการณ์ความผิดพลาดร้อยละ 1 ของผู้ป่วยใน (ความผิดพลาด 322 รายการจากจำนวนผู้ป่วยในทั้งสิ้น 32,105 ราย) ประเภทของความผิดพลาดที่พบมากที่สุดคือ การลั่งจ่ายยาของแพทย์ (ร้อยละ 35.40) ความผิดพลาดส่วนใหญ่ได้รับการตรวจสอบและแก้ไขก่อนที่ผู้ป่วยจะได้รับยา (ร้อยละ 76.71) มีผู้ป่วย 1 รายที่เกิดความผิดพลาด ไม่พบผู้ป่วยเสียชีวิต ยาที่เกิดความผิดพลาดมากที่สุดคือยาปฏิชีวนะ และเป็นยาชนิดกินมากที่สุด

**สรุป :** ความผิดพลาดทางยาเกิดขึ้นได้ไม่ยาก จึงมีความจำเป็นที่จะต้องมีการพัฒนาคุณภาพทั้งด้านความรู้ การฝึก ระวังและมีการตรวจสอบเรื่องยาของบุคลากรที่เกี่ยวข้องทุกคน

**คำสำคัญ :** ความผิดพลาดในการให้ยา, สถาบันสุขภาพเด็กแห่งชาติมหาราชินี

วรภรณ์ แสงหัวสิน, วิบูลย์ กาญจนพัฒนกุล,  
พนิดา ศรีสันต์, วิภาวดี นาสิริ, พรศรี อิงเจริญสุนทร  
จดหมายเหตุทางแพทย์ ฯ 2546; 86 (ฉบับพิเศษ 3): S570-S575

\* กลุ่มงานกุมารเวชกรรม,

\*\* กลุ่มงานเภสัชกรรม, สถาบันสุขภาพเด็กแห่งชาติมหาราชินี, กรุงเทพ ฯ 10400