

Serum Cardiac Troponin T in Unstable Angina Pectoris Patients

WATTANA LEOWATTANA, M.D.*,
KIERTIJAI BHURIPANYO, M.D.**,
SUDCHAREE KIARTIVICH, M.Sc.*

NITHI MAHANONDA, M.D.***,
SASIKANT POKUM, B.Sc.*

Abstract

Cardiac troponin T (cTnT) is a regulatory contractile protein not normally found in blood. Its detection in the circulation has been shown to be a sensitive and specific marker for myocardial cell damage. In this study, we used a second-generation enzyme immunoassay for cTnT to determine whether its presence in the serum of patients with unstable angina was a prognostic indicator. Thirty patients with unstable angina pectoris (UAP) and 30 patients with Q-wave acute myocardial infarction (AMI) were screened for serum CK-MB activity and cTnT at 6, 12, 24 and 48 hours after the onset of chest pain. All of the mean concentrations of CK-MB activity determined in UAP patients were less than the upper limit of normal (25 U/L). Meanwhile, the mean concentration of cTnT at 6, 12, 24 and 48 hours after onset of chest pain were higher than the cutoff values (0.1 µg/L). We found that one third of UAP patients had serum cTnT at the time of admission more than 0.1 µg/L and that these groups of patients were associated with a high risk for cardiac events. Our results suggested that patients with elevated serum cTnT could be considered as high-risk patients for developing myocardial infarction. Patients with normal cTnT levels and a low or intermediate clinical risk could be stabilized and further stratified noninvasively.

Key word : Troponin T, Unstable Angina

LEOWATTANA W, MAHANONDA N, BHURIPANYO K, POKUM S, KIARTIVICH S
J Med Assoc Thai 2000; 83 (Suppl. 2): S61-S65

Management of unstable angina pectoris (UAP) is largely determined by symptoms. Although some symptomatic patients stabilize, whereas others

develop myocardial infarction after a waning of symptom which are frequent during the subsequent weeks and months(1-3). Therefore, early risk strati-

* Department of Clinical Pathology,

** Her Majesty Cardiac Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

fication might be essential to select the most beneficial and cost effective therapeutic approach for each individual patient. Cardiac troponin T (cTnT) is a sensitive marker of minor myocardial necrosis and measurement of cTnT has been shown to be useful for the objective risk assessment of patients presenting with unstable angina⁽⁴⁻⁶⁾. The purpose of this study was to determine the serum concentrations of CK-MB activity and cTnT in UAP for the detection of minor myocardial damage.

MATERIAL AND METHOD

Thirty patients with Q-wave acute myocardial infarction (AMI) who met the criteria of the WHO and 30 patients who were hospitalized with Braunwald class IIIB unstable angina were enrolled in this study⁽⁸⁾. Blood samples were obtained at 6, 12, 24 and 48 hours after onset of chest pain. The specimens were collected in a tube containing no anticoagulant or preservative. After the samples were allowed to clot and centrifuged at 3,000 g for 15 min, the resulting serum aliquots were poured into freezer vials, stored at -20°C until analysis. Cardiac TnT was measured with the ES-300 system with Cardiac - T ELISA reagents (Boehringer Mannheim, Germany). All cTnT assays were carried out in accordance with the manufacturer instruction, as described^(4,7). Briefly, in this automated assay cTnT in the sample reacts with a reagent containing a biotin-labeled antibody, which then binds to streptavidin attached to a solid phase. A second antibody labeled with peroxidase is then added, which binds to the immobilized cTnT-containing complexes to yield a biotin antibody-cTnT-labeled anti-

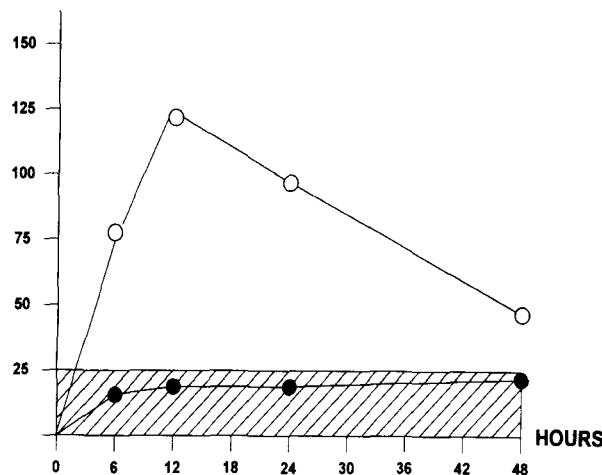
body complex. After washing, peroxidase substrate is added and the resulting signal measured. The assay's detection limit is quoted as 0.01 µg/L by the manufacturer. The cutoff that recommended in the manufacturer's package insert is 0.1 µg/L.

Statistical analysis

Continuous variables are presented as mean ± SD. Discrete variables are expressed as frequencies and percentages. The student *t*-test was used to analyze the parametric data between AMI and UAP patients. A significant difference was considered to exist at the *p* <0.05 level. A computer utilizing the StatView IV (Abacus, USA) performed all statistical analysis.

RESULTS

Baseline characteristics for the 30 patients with Q-wave AMI and 30 patients with UAP are shown in Table 1. In this table, there are no significant differences between demographic data, risk factors and lipid profiles of Q-wave AMI and UAP patients except enzyme creatine kinase which higher in AMI than in UAP patients. Cardiac TnT and CK-MB activity concentrations at 6, 12, 24 and 48 hours after onset of chest pain are shown in Table 2. Serum concentration of CK-MB activity in Q-wave AMI and UAP patients were presented in Fig. 1. In Q-wave AMI patients, the serum concentrations of CK-MB activity increased significantly over those of UAP patients during development of myocardial ischemia, peaked at 12-18 hours. While, in UAP patients the mean concentrations of CK-MB activity from 6 to 48 hours were below the


Table 1. Demographic data, clinical characteristics, lipid profiles and creatine kinase enzyme of study patients. (NS = not significant).

	AMI (n = 30)	UAP (n = 30)	p value
Age, y, mean (range)	61 (45-77)	61 (44-88)	NS
Male gender, n (%)	16 (53)	15 (50)	NS
Smoking, n (%)	17 (57)	11 (37)	NS
DM, n (%)	13 (43)	16 (53)	NS
Hypertension, n (%)	16 (53)	22 (73)	NS
Obesity, n (%)	14 (47)	9 (30)	NS
Cholesterol (mg/dL)	221.1 ± 67	217.9 ± 55	NS
Triglycerides (mg/dL)	151.2 ± 75	200.1 ± 106	NS
HDL-C (mg/dL)	39.0 ± 10	36.1 ± 10	NS
CK (U/L)	997.9 ± 1046	160.2 ± 261	< 0.0001

Table 2. Serial CK-MB and troponin T levels of UAP and AMI patients within 48 hours after onset of chest pain.

		6 hours	12 hours	24 hours	48 hours
CK-MB, U/L (5-25)	UAP	17.4 ± 8.9	18.4 ± 17.6	18.7 ± 15.2	20.5 ± 15.7
	AMI	77.6 ± 72.7	121.3 ± 91.7	96.1 ± 66.5	41.7 ± 26.7
cTnT, µg/L (< 0.1)	UAP	0.5 ± 1.6	0.6 ± 1.8	0.8 ± 1.9	1.5 ± 2.4
	AMI	2.8 ± 4.8	7.4 ± 6.6	8.8 ± 6.6	8.4 ± 6.2

Fig. 1. Representative patterns of release of CK-MB activity in patients with UAP (●) and Q-wave AMI (○).

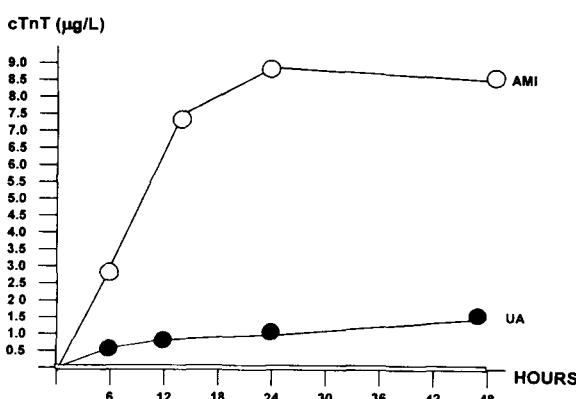


Fig. 1. Representative patterns of release of CK-MB activity in patients with UAP (●) and Q-wave AMI (○).

upper limit of normal (25 U/L). Serum concentrations of cTnT in Q-wave AMI and UAP patients were shown in Fig. 2. All of the serum concentrations of cTnT in UAP patients from 6 to 48 hours were above the cutoff value (< 0.1 µg/L). However, 11 out of 30 patients (36.6%) with UAP had an elevated cTnT level on admission. While, 30 out of 30 patients (100%) with Q-wave AMI had an elevated cTnT level on admission. Seven cardiac events occurred in 11 patients with UAP (63.63%) who had serum cTnT concentrations more than 0.1 µg/L but only 3 cardiac events occurred in 19 patients with UAP (15.79%) who had serum cTnT concentrations less than 0.1 µg/L (Table 3).

DISCUSSION

This study shows that initial cTnT levels are elevated in approximately one third of patients with UAP presenting to a hospital emergency department, and the clinical features of these patients are similar to those of patients with normal cTnT levels. A cTnT concentration exceeding 0.1 µg/L at presentation with an acute coronary syndrome has been shown to provide more prognostic information than CK-MB activity concentration or ECG(8). Our findings are consistent with many studies that show a patient with increased cTnT concentration is at increased risk for adverse cardiac events(9-11,16,17). Hamm et al and Wu et al reported elevated cTnT levels in 33 of 109 patients (30%) and 27 of 131 patients (21%) with UAP respectively(2,12). In the present study, cTnT was more sensitive than CK-MB activity in the detection of minor myocardial cell injury in UAP patients. In UAP, reversible as well as irreversible cell injury may occur. Troponin T is found in cardiac myocytes in both a small free cytosolic pool and a larger structurally bound fraction. A loss of cell membrane integrity during severe ischemia

Fig. 2. Representative patterns of release of troponin T in patients with UAP (●) and Q-wave AMI (○).

Table 3. The number of cardiac events in UAP patients with serum cTnT $\geq 0.1 \mu\text{g/L}$ compared with UAP patients who had serum levels of cTnT $< 0.1 \mu\text{g/L}$.

	cTnT $< 0.1 \mu\text{g/L}$ (n = 19)	cTnT $\geq 0.1 \mu\text{g/L}$ (n = 11)	OR (95%CI)	p value
Cardiac events	3/19 (15.8%)	7/11 (63.6%)	9.33 (1.64 - 53.21)	0.0146

cTnT = cardiac troponin T, OR = odd ratio, CI = confidence interval

results in only transient leakage from the cytosolic pool. The presence of circulating cardiac proteins in UAP patients may be explained by the intermittent critical reduction of flow as a result of intracoronary thrombus formation.

Risk stratification has been attempted using CK-MB activity concentrations, but the results are conflicting(13-15). Our result also confirms that CK-MB activity is not as sensitive at detecting minor myocardial injury as are some other investigators. Why are elevated cTnT levels such a strong predictor of a poor short-term outcome in UAP patients? The answer is, among the small subset of UAP patients who die, platelet microemboli have been described in the myocardium distal to the cul-

prit lesion(13). This phenomenon likely accounts for cTnT release, and may indicate that a lesion is particularly fragile or active, with a propensity to worsen. In conclusion cTnT determination is an inexpensive and widely applicable method for early risk assessment in UAP patients and appears to be superior to CK-MB activity determination. The maximal cTnT value obtained during the first 24 hours provides independent and important prognostic information in UAP patients. The present results suggested that measurement of cTnT in serum allow a useful prediction of risk in UAP patients. Measurement of cTnT soon after admission to the hospital may therefore help to guide decisions about the management of UAP patients.

(Received for publication on September 22, 2000)

REFERENCES

1. Betriu A, Heras M, Cohen M, Fuster V. Unstable angina: outcome according to clinical presentation. *J Am Coll Cardiol* 1992; 19: 1659-63.
2. Hamm CW, Ravkilde J, Gerhardt W, et al. The prognostic value of serum troponin T in unstable angina. *N Engl J Med* 1992; 327: 146-50.
3. Lindahl B, Venge P, Wallentin L. Relation between troponin T and the risk of subsequent cardiac events in unstable coronary artery disease. *Circulation* 1996; 93: 1651-7.
4. Katus HA, Looser S, Hallermayer K, et al. Development and in vitro characterization of a new immunoassay of cardiac troponin T. *Clin Chem* 1992; 38: 386-93.
5. Burlina A, Zeninotto M, Secchiero S, et al. Troponin T as marker of ischemic injury. *Clin Biochem* 1994; 27: 113-21.
6. Wu AHB, Valdes R, Apple FS, et al. Cardiac troponin T immunoassay for diagnosis of acute myo-
cardial infarction. *Clin Chem* 1994; 40: 900-7.
7. Ohman EM, Armstrong PW, Christensen RH, et al. Risk stratification with admission cardiac troponin T levels in acute myocardial ischemia. *N Engl J Med* 1996; 335: 1333-41.
8. Braunwald E. Unstable angina, A classification. *Circulation* 1989; 80: 410-4.
9. Alonsozana GL, Christensen RH. The case for cardiac troponin T: marker for effective risk stratification of patients with acute cardiac ischemia. *Clin Chem* 1996; 42: 803-8.
10. Lindahl B, Venge P, Wallentin L. Troponin T identifies patients with unstable coronary artery disease that benefits for long-term antithrombotic protection. *J Am Coll Cardiol* 1997; 29: 43-8.
11. Stubbs P, Collinson P, Moseley D, et al. Prognostic study of the role of cardiac troponin T in patients admitted with unstable angina. *BMJ* 1996; 313: 262-4.

12. Wu AHB, Abbas SA, Green S, et al. Prognostic value of cardiac troponin T in unstable angina pectoris. Am J Cardiol 1995; 76: 970-2.
13. Davies MJ, Thomas AC, Knapman PA, et al. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation 1986; 73: 418-27.
14. Armstrong PW, Chiong MA, Parker JO. The spectrum of unstable angina prognostic role of serum creatine kinase determination. Am J Cardiol 1982; 49: 1849-52.
15. Markenvard J, Dellborg M, Jagenburg R, et al. The predictive value of CK-MB mass concentration in unstable angina pectoris: preliminary report. J Intern Med 1992; 231: 433-6.
16. Penttila I, Penttila K, Rantanen T. Laboratory diagnosis of patients with acute chest pain. Clin Chem Lab Med 2000; 38: 187-97.
17. Bjessmo S, Ivert T. Troponin-T in patients with unstable and stable angina pectoris undergoing coronary bypass surgery. Thorac Cardiovasc Surg 2000; 48: 140-4.

คาดการณ์โรคไปนิน ที่ ไม่เลือดของผู้ป่วยที่ได้รับการวินิจฉัยว่าเป็นภาวะเจ็บหน้าอกแบบไม่เสียร

วัฒนา เลี้ยวัฒนา, พ.บ. *, นิธิ มหานนท์, พ.บ. **,
เกียรติชัย ภริปัญญา, พ.บ. **, ศศิกานต์ โพธิ์คำ, ว.ท.บ. *, สุทธิชัย เกียรติวิชญ์, ว.ท.ม. *

คาดการณ์โรคไปนินที่เป็นไปทันทันทีที่ช่วยในการทดสอบของกล้ามเนื้อหัวใจโดยปกติจะตรวจไม่พบหรือมีระดับต่ำมากในกระแสเลือด ถ้าตรวจพบคาดการณ์โรคไปนินที่ในกระแสเลือดพบว่าสามารถถูกอกถึงภาวะการห้ามหายใจได้โดยมีทั้งความไวและความจำเพาะสูง ในการศึกษาวิจัยครั้งนี้คัดผู้ป่วยใช้ น้ำยาทดสอบทางระดับคาดการณ์โรคไปนินที่รุ่นใหม่ (second generation) เพื่อตรวจเช็คไว้ในผู้ป่วยที่มีอาการเจ็บหน้าอกแบบไม่เสียร คาดการณ์โรคไปนินที่จะช่วยในการพยากรณ์โรคและแยกกลุ่มผู้ป่วยที่มีความรุนแรงของโรคแตกต่างกันออกจากกันได้หรือไม่เมื่อเปรียบเทียบกับชีคี-เอ็มบี โดยทำการตรวจเลือดทางระดับของชีคี-เอ็มบี และ คาดการณ์โรคไปนินที่ในผู้ป่วยเจ็บหน้าอกแบบไม่เสียรจำนวน 30 ราย และในผู้ป่วยกล้ามเนื้อหัวใจตายเฉียบพลันอีก 30 รายที่เวลา 6, 12, 24, และ 48 ชั่วโมงหลังมีอาการเจ็บหน้าอก พบว่า ค่าเฉลี่ยของระดับชีคี-เอ็มบีในผู้ป่วยเจ็บหน้าอกแบบไม่เสียรมีระดับต่ำกว่า 25 U/L ซึ่งเป็นระดับสูงสุดที่พบในคนปกติซึ่งไม่สามารถถูกอกภาวะเจ็บหน้าอกแบบไม่เสียรได้โดยการตรวจชีคี-เอ็มบี ในขณะเดียวกันค่าเฉลี่ยของระดับโรคไปนินที่ในผู้ป่วยเจ็บหน้าอกแบบไม่เสียรที่เวลา 6, 12, 24, และ 48 ชั่วโมงหลังมีอาการเจ็บหน้าอกสูงกว่าค่าสูงสุดที่พบในคนปกติ ทุกช่วงเวลา นอกจากนั้นยังพบว่า 1 ใน 3 ของผู้ป่วยที่มีอาการเจ็บหน้าอกแบบไม่เสียรมีระดับคาดการณ์โรคไปนินที่สูงกว่า 0.1 ในโครงการมิลลิลิตรและผู้ป่วยกลุ่มนี้จะมีอัตราเสี่ยงต่อการเกิดภาวะกล้ามเนื้อหัวใจตายเฉียบพลันและเสียชีวิตแบบทันที ได้มากกว่ากลุ่มผู้ป่วยที่มีระดับคาดการณ์โรคไปนินที่ปกติ ผลการวิจัยในครั้งนี้น่าจะช่วยออกได้ว่าหากพบผู้ป่วยเจ็บหน้าอกแบบไม่เสียรที่มีระดับคาดการณ์โรคไปนินที่สูงกว่า 0.1 ในโครงการมิลลิลิตรและผู้ป่วยกลุ่มนี้ควรได้รับการพิจารณาให้การรักษาแบบเร่งด่วนเพื่อป้องกันการเกิดกล้ามเนื้อหัวใจตายเฉียบพลันและนำไปสู่การเสียชีวิตในที่สุด ส่วนผู้ป่วยที่มีระดับคาดการณ์โรคไปนินที่น้อยกว่า 0.1 ในโครงการมิลลิลิตรและไม่พบอาการทางคลินิกที่รุนแรงจะได้แยกให้การรักษาแบบปกติ.

คำสำคัญ : คาดการณ์โรคไปนิน ที่, ภาวะเจ็บหน้าอกแบบไม่เสียร

วัฒนา เลี้ยวัฒนา, นิธิ มหานนท์, เกียรติชัย ภริปัญญา, ศศิกานต์ โพธิ์คำ, สุทธิชัย เกียรติวิชญ์
จดหมายเหตุทางแพทย์ ๔ 2543; 83 (ฉบับพิเศษ 2): S61-S65

* ภาควิชาพยาธิวิทยาคลินิก,

** ลามนักงานศูนย์โรคหัวใจสมเด็จพระบรมราชินีนาถ, ศูนย์แพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมหิดล, กรุงเทพ ๔ 10700