

Mycobacterium Avium Complex in HIV-infected Thai Children

**WANATPREEYA PHONGSAMART, M.D.*,
ANGKANA CHAIPRASERT, Dr.rer.nat**,
SANAY CHEARSKUL, M.D.*,**

**KULKANYA CHOKEPHAIBULKIT, M.D.*,
NIRUN VANPRAPA, M.D.*,
RANGSIMA LOLEKHA, M.D.***

Abstract

Of the 169 human immunodeficiency virus (HIV)-infected children being cared for at Siriraj Hospital from January 1998 to September 2000, 10 had *Mycobacterium avium* complex (MAC) infection; seven had disseminated disease and three had MAC pneumonia. Nine children were in the advanced stage of HIV disease at the time of diagnosis with the median CD4 count of 7 cells/mm³ and 127 cells/mm³ and the median age of 65 months and 63 months in disseminated MAC and MAC pneumonia respectively. None of these children had received prior chemoprophylaxis.

Common clinical findings included prolonged fever, weight loss, lymphadenopathy, hepatosplenomegaly, diarrhea, anemia and leukopenia. The outcome of MAC infection was poor, with a mortality rate of 60 per cent. In *in vitro* susceptibility testing, clarithromycin was the least resistant drug.

With the incidence rate of 2.15 per 100 person-years, the high rate of antimicrobial resistance, and the poor outcome, primary chemoprophylaxis for MAC infection in conjunction with effective antiretroviral therapy should be considered for Thai children in the advanced stage of HIV infection.

Key word : *Mycobacterium Avium Complex*, MAC, HIV-Infected Children, Chemoprophylaxis

**PHONGSAMART W, CHOKEPHAIBULKIT K, CHAIPRASERT A,
VANPRAPA N, CHEARSKUL S, LOLEKHA R**
J Med Assoc Thai 2002; 85 (Suppl 2): S682-S689

* Department of Pediatrics,

** Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

Mycobacterium avium complex (MAC) has been known as a cause of serious opportunistic infections (OI) in HIV-infected individuals(1-3). MAC infection in HIV-infected patients were mostly disseminated. In the US in 1990, MAC was reported in 7.6 per cent adult patients with AIDS(4). In comparison with adults, infections caused by MAC have been found less frequently in children and exclusively in the severely immune suppressed stage. The Pediatric AIDS Clinical Trials Group (PACTG) conducted a multicenter study among 3,331 HIV-infected children before the era of highly active antiretroviral therapy. There were 126 events of disseminated MAC (DMAC) infection with the event rate of 1.8 per 100 patient-years. The median CD4 count and CD4 per cent at the time of or just before diagnosis of DMAC were 17 cells/mm³ and 2 per cent respectively(5). Another study in the US found 7 of 70 HIV-infected children (10%) aged less than 13 years who had prolonged fevers and failure to thrive developed DMAC(2).

In Thailand, DMAC infection was found in 17 per cent of HIV-infected adults with prolonged fever of unknown cause(6). However, MAC was reported to the Ministry of Public Health in only 1 out of 256 OI episodes in children with AIDS between 1988 and 1995. The lower incidence could be from diagnostic difficulties(7).

The aim of this study was to describe MAC infections in HIV-infected Thai children. This information will be helpful for the consideration of prophylaxis strategy that has not been implemented in Thai children. Another objective was to evaluate the rate of antibiotic resistance of MAC isolates in our institute.

MATERIAL AND METHOD

From January 1998 to September 2000, HIV-infected children in the advanced stage of diseases who were hospitalized with persistent or recurrent fever were investigated for MAC infection. The investigations included blood culture for mycobacteria, and also gastric aspirate (GA) culture in the patients who also had abnormal chest roentgenogram (CXR). The blood culture was carried out by an automate system, BACTEC 9240, using fluorescent detection system.

Identification of MAC was performed by standard biochemical tests(8) and some were confirmed by in-house polymerase chain reaction (PCR). The primers used were based on 16S rRNA gene,

NGL-NGR gene, with the following sequences: GGA TAG GAC CTC AAG AC (from bases number 133-149) and TAC CGT CAA TCC GAG AA (from base numbers 438-422).

The MAC isolates were tested for drug sensitivity by proportional method(8,9). The antimicrobial agents tested were ethambutol, rifampicin, ciprofloxacin, ofloxacin, amikacin, doxycycline, clarithromycin and streptomycin. The antimicrobial agents used were in the form of drug-containing paper discs from which the agents were released to the medium and yielded the final concentration as shown in Table 1.

The criteria for resistance used was that the number of colonies growing on the drug containing medium was 1 per cent or more than the number on the drug-free medium.

The medical records of the patients with MAC infection were retrospectively reviewed.

RESULTS

During the 33 month period, of the 169 HIV-infected children regularly seen in the clinic, 38 children were investigated for MAC infection. Of these 10 had MAC isolated from blood and/or gastric aspirate (GA); 4 from blood only, 3 from GA only and 3 from both blood and GA. All the children who had MAC isolated from GA had abnormal CXR with respiratory symptoms. The 3 children who had MAC isolated from GA but not from blood were diagnosed with MAC pneumonia. The other 7 children with MAC bacteremia were diagnosed with DMAC infection. The incidence rate of MAC infection in this cohort was 2.15 per 100 person-years. The demographic, clinical, and laboratory findings of these children are shown in Table 2.

Table 1. Amount of antimicrobial agents on the paper discs and final concentration in the medium for drug susceptibility testing.

Drugs	µg of drug/disc	Final concentration in medium (µg/ml)
Amikacin	30	6
Ciprofloxacin	5	1
Clarithromycin	15	3
Doxycycline	30	6
Ethambutol	25	5
Ofloxacin	5	1
Rifampicin	5	1

Table 2. Demographic, clinical and laboratory findings in HIV-infected children with MAC infection.

Characteristic	DMAC (N=7)	Probable MAC pneumonia (N=3)
Demographic		
Median (range) age (months)	65 (20-101)	63 (24-74)
Sex		
Male	4	2
Female	3	1
Clinical stage before the MAC infection episode		
B	-	1
C	7	2
Immunological status		
Median (range) CD4 count (cells/mm ³)	7 (4-48) (N=4)	127 (N=1)
Median (range) CD4 (%)	1.67 (0.22-4.31) (N=4)	3.77 (N=1)
On ART	1 (d4T+ddl+HU)*	2 (ddl, d4T+ddl)
Presenting symptoms		
Prolonged fever	5	3
Weight loss	7	2
Lymphadenopathy	6	3
Hepatomegaly	7	3
Splenomegaly	1	2
Diarrhea	4	3
Respiratory symptoms		
Cough	5	2
Dyspnea	2	2
Tachypnea	1	2
Laboratory (mean and range)		
Hematocrit (%)	25 (13-31.5)	31.4 (10.5-36.5)
WBC (cells/mm ³)	7,020 (1,600-28,940)	2,660 (1,920-5,800)
Liver function tests		
Alkaline phosphatase (U/L)	283 (125-342)	222 (93-351)
GGT (U/L)	192 (45-300)	70 (31-109)
LDH (U/L)	1,074 (871-1,596)	936 (750-1,122)
CXR (N=8)		
Focal infiltration	2	-
Diffuse infiltration	2	3
Hilar lymphadenopathy	2	1
Death	4 (57%)	2 (67%)

* d4T: stavudine, ddl: didanosine, HU: hydroxyurea

The median age of the children with DMAC infection and MAC pneumonia was 65 and 63 months old respectively. Nine (90%) children were in the advanced stage of HIV before MAC infection was diagnosed. The CD4 level available in 5 patients revealed severe immunosuppressive stage with the median of 7 cells/mm³ (1.67%) in DMAC and 127 cells/mm³ (3.77%) in MAC pneumonia. Only 3 patients were on antiretroviral therapy (ART) with single or dual nucleoside reverse transcriptase inhibitors. Prolonged fever (80%), weight loss (90%), lymphadenopathy (90%) and hepatomegaly (100%) were the common presenting signs and symptoms.

Respiratory symptoms were also common and more pronounced in cases of MAC pneumonia than these of DMAC infection.

Nine (90%) children were anemic (Hematocrit <33%) and four (40%) were leukopenic (WBC <4,000 cells/mm³). Of the eight patients who had CXR done, all were abnormal. The distribution of the infiltration was mostly diffused, although localized infiltration was also found in 2 patients. Hilar lymphadenopathy was infrequently found.

Five of the seven children with DMAC infection and one of the three with MAC pneumonia received antibiotics treatment including clarithro-

Table 3. Detailed clinical findings in each patient.

No	Sex	Age (Months)	Clinical staging**	Immuno staging**	CD4 count	CD4 %	Symptoms	Specimen***	ART****	Treatment *****	Outcome and timing
1	M*	48	C	3	4	0.22	fever, weight loss, diarrhea, hepatosplenomegaly, lymphadenopathy	B	D4T+ddI+HU	CER	Survive at 24 months of F/U (cleared bacteremia)
2	F	65	C	3	8	0.4	weight loss, anorexia, hepatosplenomegaly, lymphadenopathy	B		CER	Survive at 17 months of F/U (cleared bacteremia)
3	F	67	C	-	-	-	fever, weight loss, diarrhea, anorexia, hepatomegaly, lymphadenopathy	B & GA		CER	Survive at 12 months of F/U
4	F	91	C	-	-	-	fever, weight loss, diarrhea, anorexia, hepatomegaly, lymphadenopathy	B & GA	2IRZE		Died from septic shock at 7 months after diagnosis
5	M	101	C	3	48	2.93	fever, weight loss, anorexia, diarrhea, hepatomegaly, lymphadenopathy	B & GA		-	Died from unknown cause at 10 days after diagnosis
6	M	20	C	-	-	-	fever, weight loss, diarrhea, hepatosplenomegaly, lymphadenopathy	B	ddI	CER	Died at 3 weeks of treatment (liver, spleen and lung necropy found AFB)
7	M	60	C	-	6	4.31	fever, weight loss, diarrhea, hepatomegaly, lymphadenopathy	B		CER	Died at 7 months of F/U (liver necropy found AFB)
8	M	24	C	3	-	-	weight loss, anorexia, hepatomegaly, lymphadenopathy	GA		IRZEC	Died at home of unknown cause at 3 months of F/U
9	F	74	B	3	127	3.77	fever, diarrhea, hepatosplenomegaly, lymphadenopathy	GA	D4T+ ddI	IRZEC	Refer at 2 months of F/U
10	M	63	C	-	-	-	fever, weight loss, diarrhea, anorexia, hepatomegaly	GA		-	Died at home of unknown cause at 3 months of F/U

* M : male, F : female,

** CDC classification for HIV-infected children,

*** B : blood, GA : gastric aspirate,

**** d4T : stavudine, ddI : didanosine, HU : hydroxyurea,

***** C : clarithromycin, E : ethambutol, R : rifampicin, I : isoniazid, Z : pyrazinamide F/U : follow up

Table 4. Results of drug susceptibility testing.

Patient number	Specimens	Drug susceptibilities***							
		etham	rifam	cipro	oflox	amik	doxy	clari	strep
1	Blood	-	-	-	-	-	-	-	-
2	Blood	S*	R**	-	-	S	S	S	R
3	Blood	R	R	-	R	R	R	S	R
	Gastric wash	R	R	-	-	R	R	R	R
4	Blood	R	R	-	-	R	R	S	R
	Gastric wash	R	R	-	-	R	R	R	R
5	Blood	-	-	-	-	-	-	-	-
	Gastric wash	-	-	-	-	-	-	-	-
6	Blood	R	R	-	-	R	R	S	R
7	Blood	R	R	-	R	-	-	-	R
8	Gastric wash	R	R	-	R	R	R	R	R
9	Gastric wash	-	-	-	-	-	-	-	-
10	Gastric wash	-	-	-	-	-	-	-	-
Total sensitivity rate (%)		1/8 (12.5)	0/8 (0)	-	0/3 (0)	1/7 (14.2)	1/7 (14.2)	4/7 (57.1)	0/8 (0)

* S : sensitive

** R : resistant

*** etham = ethambutol, rifam = rifampicin, cipro = ciprofloxacin, amik = amikacin, doxy = doxycycline, clari = clarithromycin, strep = streptomycin

mycin, ethambutol and rifampicin. Only 2 patients were able to get rid of MAC bacteremia after treatment. The treatment, however, did not resolve the symptoms in any patients. Four of the patients with DMAC infection died at 10 days, 3 weeks, 7 months, and 7 months after diagnosis. Two of these had acid fast bacilli in various organs postmortem. Another 3 are still alive after 13, 17, 23 months of follow-up. In 2 of these, bacteremia was cleared. The other patient continue to have positive blood culture taken 3 months after treatment. Of the patients with MAC pneumonia, two died 3 months after diagnosis and the other patient was referred to another hospital with unknown outcome.

Eight MAC isolates were available for drug sensitivity testing, 5 from blood and 3 from GA. All the isolates from blood were sensitive to clarithromycin, however, all the isolates from GA were resistant. All isolates from both blood and GA were resistant to rifampicin. All but one isolate from blood were resistant to ethambutol. All the isolates from GA resisted all the antibiotics tested. The overall mortality rate was 60 per cent. The median survival time after diagnosis was 3.3 months.

DISCUSSION

This report confirmed that MAC infection is not a rare OI in HIV-infected children in Thai-

land. The incidence rate of 2.15 per 100 person-years found in this study was higher than that previously reported in the US(5). Patients with MAC infection were all older than 2 years old and in the advanced stage of HIV. These findings were similar to that found in adults(10-12). The median age found in the present study was 63-65 months, close to that found in previous reports(2,3).

In the present study, three children in whom MAC were isolated from GA without mycobacteremia were diagnosed as MAC pneumonia. However, it was possible that the isolates were from respiratory or gastrointestinal colonization. With the compatible signs and symptoms, the authors suspected that they were cases of DMAC infection with false negative blood culture. A study in adults reported that respiratory colonization associated with 65 per cent positive predictive value for DMAC infection (13). For these reasons, these patients were treated as if they had DMAC. According to the current recommendation for prophylaxis(14), all but one child in this study fulfilled the criteria for MAC prophylaxis. However, none had received chemoprophylaxis before the episodes.

The clinical signs and symptoms found in this study were similar to those previously reported (1,15). Anemia and leukopenia were common findings in DMAC infection, although some medications

such as zidovudine and cotrimoxazole, as well as HIV infection itself, may also contribute to bone marrow dysfunction(1,4).

Current recommendations for treatment of MAC including clarithromycin or azithromycin plus ethambutol, and a third drug such as rifampicin, rifabutin, clofazimine, ciprofloxacin or amikacin may be added(16-18). However, the outcome even with the recommended treatment was very disappointing (3), as found in the present study. The high rate of drug resistance may explain this unfavorable outcome. Moreover, the patients in this study did not receive adequate antiretroviral therapy and therefore were in a poor condition before the episodes.

The high resistant rate in this study is alarming. Clarithromycin is the only effective drug in *in vitro* test. However, monotherapy with clarithromycin induced resistance quite rapidly and also induced cross-resistance to azithromycin(19,20). A larger antibiotic-resistance surveillance study in our institution testing 127 clinical isolates from July 1997 to July 1999 revealed resistant rate as follows: amikacin 91 per cent, rifampicin 88 per cent, ethambutol 69 per cent, and clarithromycin 44 per cent. Of the 103

isolates from HIV-infected individuals, 38 per cent resisted all drugs tested(21).

With the high resistant rate and poor outcome, prevention is the important strategy. Effective antiretroviral therapy is probably the best measure, however, is not feasible in places with limited resources. Primary chemoprophylaxis has not been used in Thailand due to the belief that MAC is rare and antibiotics for prophylaxis (clarithromycin/azithromycin) are expensive. Diagnostic difficulties probably resulted in missing the diagnosis in many cases. This study has shown that the incidence of MAC infection in Thai children is even higher than in the US, and therefore chemoprophylaxis should be considered in children in the advanced stage of HIV.

In conclusion, the authors have shown that MAC infection in HIV-infected Thai children is not rare. The host factors, clinical, and laboratory findings were all similar to other reports. The outcome is generally unfavorable. Primary chemoprophylaxis in conjunction with effective antiretroviral therapy, the important measures to prevent MAC infection, should be implemented whenever possible particularly in places with a high rate of drug resistance.

(Received for publication on February 1, 2002)

REFERENCES

1. Benson CA. Disease due to the *Mycobacterium avium* complex in patients with AIDS: Epidemiology and clinical syndrome. *Clin Infect Dis* 1994; 18 (Suppl3): S218-22.
2. Rutstein MR, Cobb P, McGowen KL, Martin JP, Starr SE. *Mycobacterium avium -intracellulare* complex infection in HIV-infected children. *AIDS* 1993; 7: 507-12.
3. Hoyt L, Oleske J, Holland B, Connor E. Nontuberculous mycobacteria in children with acquired immunodeficiency syndrome. *Pediatr Infect Dis J* 1992; 11: 354-60.
4. Horsburgh CR Jr. *Mycobacterium avium* complex infection in the acquired immunodeficiency syndrome. *N Eng J Med* 1991; 324: 1332-8.
5. Dankner WM, Lindsey JC, Levin MJ. Correlates of opportunistic infections in children infected with the human immunodeficiency virus managed before highly active antiretroviral therapy. The Pediatric AIDS Clinical Trials Group Protocol Teams 051, 128, 138, 144, 152, 179, 190, 220, 240, 245, 254, 300 and 327. *Pediatr Infect Dis J* 2001; 20: 40-8.
6. Chuchottaworn C, Tansuphawadikul S, Kantipong P, Sathapatayawongs B, Suwanagool S, Pornchairoonthavee S. Prevalence of disseminated *Mycobacterium avium* complex infection in Thai AIDS patients. *J Med Assoc Thai* 1999; 82: 643-7.
7. Plipat T. Pediatric AIDS, Thailand. Weekly Epidemiology Surveillance Report 1996; 27: 501-16.
8. Kent PT, Kubica GP. 1985. Public Health Mycobacteriology. A guide for the level III laboratory. U.S. Department of Health and Human Services, Public Health Service, Center for Disease Control, Atlanta, Georgia 30333. 207.
9. Heifets L. Susceptibility testing of *Mycobacterium avium* complex isolates. *Antimicrob Agents Chemother* 1996; 40: 1759-67.
10. Hawkins CC, Gold JWM, Whimbey E, et al. *Mycobacterium avium* complex in patients with the acquired immunodeficiency syndrome. *Ann Intern Med* 1986; 105: 184-8.
11. Modilevsky T, Sattler FR, Barnes PF. Mycobacterial disease in patients with immunodeficiency virus infection. *Arch Intern Med* 1989; 149: 2201-5.
12. Hoy J, Mijch A, Sandland M, et al. Quadruple drug therapy for *Mycobacterium avium-intracellulare* bacteremia in AIDS patients. *J Infect Dis* 1990; 161: 801-5.
13. Jacobson MA, Hopewell PC, Yajko DM, et al. Natural history of disseminated *Mycobacterium avium* complex in AIDS. *J Infect Dis* 1991; 164: 994-8.
14. USPHS/IDSA Prevention of Opportunistic Infections Working Group. Prevention of opportunistic infections in persons infected with HIV. *Clin Infect Dis* 2000; 30 (Suppl1): S29-65.
15. Havlik JA Jr, Horsburgh CR Jr, Metchock B, Williams PP, Fann SA, Thompson SE III. Disseminated *Mycobacterium avium* complex infection: Clinical identification and epidemiologic trends. *J Infect Dis* 1992; 165: 577-80.
16. Benson CA. Treatment of disseminated disease due to *Mycobacterium avium* complex in patients with AIDS. *Clin Infect Dis* 1994; 18 (Suppl 3): S237-42.
17. Horsburgh CR Jr. Advances in the prevention and treatment of *Mycobacterium avium* disease. *N Eng J Med* 1996; 335: 428-9.
18. Ellner JJ, Goldberger MJ, Parenti DM. *Mycobacterium avium* infection and AIDS: A therapeutic dilemma in rapid evolution. *J Infect Dis* 1991; 163: 1326-35.
19. Chaisson RE, Benson CA, Dube MP, et al. Clarithromycin therapy for bacteremic *Mycobacterium avium* complex disease: A randomized double-blind, dose-ranging study in patients with AIDS. *Ann Intern Med* 1994; 121: 905-11.
20. Heifets L, Mor N, Vanderkolk J. *Mycobacterium avium* strains resistant to clarithromycin and azithromycin. *Antimicrob Agents Chemother* 1993; 37: 2364-70.
21. Prawit Ketthong. Identification of *Mycobacterium avium -intracellulare* complex to species level by PCR and drug susceptibility. A thesis submitted in partial fulfillment of the requirements for the degree of master of science (microbiology), Faculty of Graduate studies, Mahidol University 2000.

การติดเชื้อมัคโคแบคทีเรียม เอวีเอ็ม คอมเพล็กซ์ในผู้ป่วยเด็กไทยที่มีการติดเชื้อเอชไอวี

วนัทปริยา พงษ์สามารถ, พ.บ.*, ฤกษ์กัญญา โชคไพบูลย์กิจ, พ.บ.*,
อังคณา ชาญประเสริฐ, Dr.rer.nat**, นิรันดร วรรณประภา, พ.บ.*,
เสนาท เจียสกุล, พ.บ.*, รังสิมา โล่ห์เลขา, พ.บ.*

การติดเชื้อมัคโคแบคทีเรียม เอวีเอ็ม คอมเพล็กซ์เป็นปัญหาโรคติดเชื้อฉุกเฉินที่สำคัญในผู้ป่วยเด็กที่มีการติดเชื้อเอชไอวี จากจำนวนผู้ป่วยเด็กติดเชื้อเอชไอวี 169 รายในโรงพยาบาลศิริราชระหว่างเดือนมกราคม 2541 ถึงเดือนกันยายน 2543 พบรู้ปั่นที่มีการติดเชื้อมัคโคแบคทีเรียม เอวีเอ็ม คอมเพล็กซ์ 10 ราย โดย 7 รายมีการติดเชื้อแบบแพร์กระจายและ 3 รายมีการติดเชื้อในปอด ผู้ป่วย 9 รายอยู่ในระยะท้ายของการติดเชื้อเอชไอวีโดยมีค่ามัคบูรุณของจำนวน CD4 เท่ากับ 7 เชลล์/ลูบากาส์ก์มิลลิเมตรและ 127 เชลล์/ลูบากาส์ก์มิลลิเมตรและค่ามัคบูรุณของอายุเท่ากับ 65 เดือนและ 63 เดือนในผู้ป่วยที่มีการติดเชื้อแบบแพร์กระจายและผู้ป่วยที่มีการติดเชื้อในปอดตามลำดับ ไม่มีผู้ป่วยรายใดได้รับยาป้องกันการเกิดโรคนี้มาก่อน อาการและอาการแสดงที่สำคัญ ได้แก่ ไข้ร้อนงั้น น้ำหนักลด ต่อมน้ำเหลืองโต ตับมีน้ำ ท้องเสีย ซื้ดและเม็ดเลือดขาวต่ำ ผู้ป่วยที่มีการติดเชื้อมัคโคแบคทีเรียม เอวีเอ็ม คอมเพล็กซ์มีอัตราการเสียชีวิตสูงถึง 60% จากการทดสอบความไวของเชื้อต่อยา clarithromycin น้อยที่สุด

จากการที่อัตราการติดเชื้อมัคโคแบคทีเรียม เอวีเอ็ม คอมเพล็กซ์ในผู้ป่วยเด็ก ที่มีการติดเชื้อเอชไอวีสูงถึง 2.15 รายต่อ 100 person-years รวมทั้งมีอัตราการต้องยาและอัตราการเสียชีวิตที่สูง จึงควรจะมีการพิจารณาให้ยาป้องกันการติดเชื้อแบบปฐมภูมิร่วมกับการให้ยาต้านไวรัสที่ เหมาะสมในเด็กไทยที่มีการติดเชื้อเอชไอวีในระยะท้าย

คำสำคัญ : การติดเชื้อมัคโคแบคทีเรียม เอวีเอ็ม คอมเพล็กซ์, เด็กที่ติดเชื้อเอชไอวี, การใช้ยาป้องกันการเกิดโรค

วนัทปริยา พงษ์สามารถ, ฤกษ์กัญญา โชคไพบูลย์กิจ, อังคณา ชาญประเสริฐ,
นิรันดร วรรณประภา, เสนนาท เจียสกุล, รังสิมา โล่ห์เลขา
จดหมายเหตุทางแพทย์ ฯ 2545; 85 (ฉบับพิเศษ 2): S682-S689

* ภาควิชาภูมิแพ้ทางศาสตร์,

** ภาควิชาจุลชีววิทยา, คณะแพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมหิดล, กรุงเทพ ฯ 10700