

A Survey of the Anesthesia Scavenging Systems in a Teaching Hospital

PREECHA SOONTRANAN, M.D.*,
PRADIT SOMPRAKIT, M.D.*,

JARIYA LERTAKYAMANEE, M.D.*,
SUDKANOUNG SURACHETPONG, B.Sc.*

Abstract

Pollution by anesthetic gases can be a problem in operating theaters. More than 90 per cent of this pollution can be reduced by using a scavenging system. Such systems increase the complexity, and thus the hazards of administering anesthesia. A case of pneumothorax prompted an investigation of the active scavenging systems currently used in a teaching hospital by using a pre-use check up protocol. Thirty-eight closed-reservoir active scavenging systems were included.

Ten systems (26.3%) were assembled incorrectly. All systems passed a negative pressure relief valve test. Seventeen systems (44.7%) failed to pass a positive pressure relief valve test because high pressure (over 10 cmH₂O) developed during an O₂ flush, but direct measurement of the pressure at the scavenging interface revealed that these defects were caused by a problem with the adjustable pressure limiting (APL) valves, not with the positive pressure relief valves of the system. We suggest that routine pre-use check up together with regular maintenance of equipment should be emphasized and all personnel should be encouraged to learn more about safety precautions.

Key word : Anesthesia, Equipment, Hazards, Safety, Scavenging System

SOONTRANAN P, LERTAKYAMANEE J,
SOMPRAKIT P, SURACHETPONG S
J Med Assoc Thai 2002; 85 (Suppl 3): S824-S829

In 1976, Vaisman⁽¹⁾ reported a survey of 110 Russian female anesthesiologists. Out of 31 pregnancies, 18 ended in abortion and 1 had a child with a congenital abnormality. It was concluded that

this was the result of chronic inhalation of anesthetic vapor and excessive workload. Studies from the United Kingdom^(2,3) confirmed this finding. Studies from the United States reported that women who were

* Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

exposed to inhalation anesthetics had a higher incidence of abortion, liver and kidney disease, and cancer. In men, the incidence of liver disease increased (4). Investigation of the effects on perceptual skills was also done (5). This evidence suggested a relationship of several health hazards and inhalation of anesthetic gases. It was recommended that these risks should be minimized by maintaining exposure as low as was technically feasible (1). The most effective method is to install a proper ventilation and scavenging system which can reduce 90 per cent of the anesthetic pollution in the operating room (1). But this system increase the complexity and thus the hazards of administering the anesthesia (6-14), especially if there is no effective check up. After scavenging had been used for 3 years, the hazards of the system were reported and 1 patient developed a severe pneumothorax (13). We surveyed all the scavenging systems currently used in this teaching hospital to identify defects which were potentially hazardous to the patient.

MATERIAL AND METHOD

A descriptive cross-sectional study was performed to survey all scavenging systems currently used in the hospital. All of them were "closed reservoir with an active scavenging safety interface" (Fig. 1).

The procedure of check up was as follows;

1. Verify proper installation of the system. Connect the intake port to the machine's APL valve (or ventilator's excess gas outlet). Connect the nipple for suction to the wall inlet of "exhaust gas". Check that all components are fixed properly (Fig. 1).

2. Negative pressure relief valve test. Occlude the Y-piece of the breathing system to make it a closed system, turn on the APL valve until completely open. Create a negative pressure by adjusting the suction force until the reservoir bag is completely collapsed. Check the pressure gauge, the pressure should not indicate below $-0.25 \text{ cmH}_2\text{O}$. A negative pressure below this level is considered abnormal.

3. Positive pressure relief valve test. Turn on the O_2 flush valve until the reservoir bag is fully inflated. The pressure gauge should not indicate more than $+10 \text{ cmH}_2\text{O}$. A pressure over this level is considered abnormal.

4. In case of an abnormal result in 3 (pressure $>10 \text{ cmH}_2\text{O}$), the auxiliary pressure gauge should be connected to the scavenging interface to check whether the defect is due to the APL valve or the positive pressure relief valve.

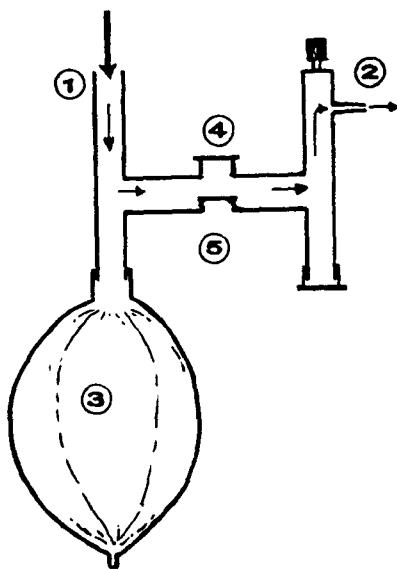


Fig. 1. Diagram of the scavenging system (closed reservoir active scavenging safety interface) currently used in this teaching hospital; 1) intake port 2) nipple for suction and adjustment knob 3) reservoir bag 4) positive pressure relief valve and 5) negative pressure relief valve.

RESULTS

Thirty-eight scavenging systems were included in this survey. Ten systems (26.3%) were incorrectly installed (Table 1). The details of incorrect installation are summarized in Table 2. The contributing factors were failure to check the equipment (8 cases) and faulty technique (2 cases).

There were no abnormally functioning negative pressure relief valves in any of the systems (Table 1).

The results of the positive pressure relief valve test showed that 17 systems (44.7%) developed a pressure over $10 \text{ cmH}_2\text{O}$. The abnormal pressure ranged from $11-18 \text{ cmH}_2\text{O}$ (Table 3).

Among the 17 systems with an abnormally high pressure, we found that the pressure at the interface was between $2.5-4.0 \text{ cmH}_2\text{O}$ (Table 4) but the pressure in the breathing systems was still higher than $10 \text{ cmH}_2\text{O}$. This finding indicated that the defects were at the APL valve of the breathing systems.

Table 1. The result of the 3 tests: correct assembly, negative pressure relief valve (NPRV) test, and positive pressure relief valve (PPRV) test.

	Correct assembly				NPRV test				PPRV test			
	Passed	%	Failed	%	Passed	%	Failed	%	Passed	%	Failed	%
No. of scavenging system	28	73.7	10	26.3	38	100	0	0	21	55.3	17	44.7

Table 2. The problems in 10 scavenging systems which were detected on observation.

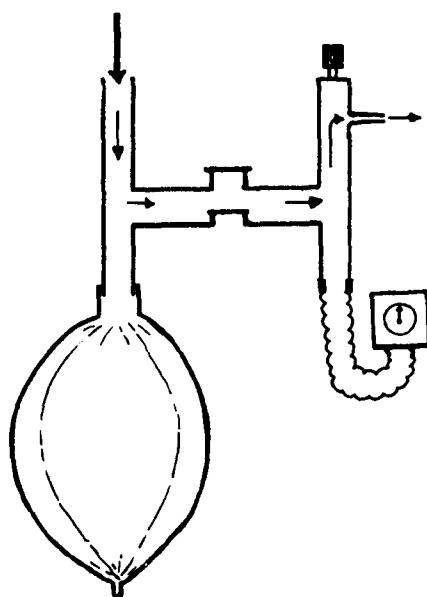
Problems	No. of systems (n=10)	Contributing factors
1. Unconnected conducting tube	3	Failure to check equipment
2. Absence of 19-mm connector	2	Faulty technique
3. Water trapped in conducting tube	2	Failure to check equipment
4. Absence of reservoir bag	1	Failure to check equipment
5. Unconnected suction port	1	Failure to check equipment
6. Absence of conducting tube	1	Failure to check equipment

Table 3. The abnormal positive pressures that were detected in 17 systems.

Positive pressure (cmH ₂ O)	No. of systems (n=17)
11	4
12	3
13	2
14	1
15	3
16	2
17	1
18	1

Table 4. The positive pressure obtained from direct measurement of the 17 scavenging interfaces.

Positive pressure (cmH ₂ O)	No. of systems (n=17)
2.5	9
3.0	4
3.5	3
4.0	1


DISCUSSION

Installation of a scavenging system in the operating room is recommended to reduce anesthetic pollution(1). Such equipment increases complexity to the anesthesia delivery system and thus the hazards of administering anesthesia(6-14). In countries where a pre-use check up and maintenance program have been practiced routinely, the incident report of hazards is low(15,16). All defects detected in this study were the accumulated result after 3 years' use without regular maintenance and check up. The unconnected conducting tubes, disconnected suction port, and absent reservoir bags all create anesthetic pollution in the operating rooms. The suction force could not be adjusted properly because there was no reservoir bag as an indicator. Water trapped in the conduction

tube might increase expiratory flow resistance to a certain degree. Absence of a 19-mm connector for the scavenging system(17) might cause confusion to personnel and produces a potential risk of misconnection, especially when 22-mm breathing tubes are used in both breathing and scavenging systems.

There was no defect of the negative pressure relief valves in any system.

Ward(18) and The American Society of Anesthesiologists recommended +10 cmH₂O as the maximum pressure to test the positive pressure relief valve because this criteria is safe and prevent barotrauma of the patient's airway. The excess pressure was possibly due to 2 factors; 1) the flow rate from the breathing system (e.g., O₂ flush 35-75 liters per

Fig. 2. The method for identifying the cause of abnormal high pressure in the system, which might be outside (e.g. APL valve) or inside the scavenging system (the positive pressure relief valve). After high pressure (exceed 10 cmH₂O) was detected by positive pressure relief valve test, the test was repeated with an auxiliary pressure gauge directly connected to the scavenging interface.

minute or lpm) was more than the displacement volume (minimum 30 lpm⁽¹⁾) created by the scavenging system. This defect must occur concomitantly with a defect of the positive pressure relief valve (normally open at 5 cmH₂O⁽¹⁾) and 2) a defect of the APL valve of the breathing system such as being sticky from damp and dust. In order to identify the exact defect an auxiliary pressure gauge was connected to the scavenging interface (Fig. 2) to measure the pressure inside it. The results of this measurement were 2.5-4 cm H₂O (Table 4) which meant that the defect was not at the scavenging interface (the posi-

tive pressure relief valve functioned normally), but it was at the APL valve. These defects cannot be detected during routine use because we do not routinely turn on the O₂ flush valve and the total fresh gas flow is normally not more than 6 lpm (much lower than the displacement volume of the vacuum suction). Even though there is an intermittent peak expiratory flow rate⁽¹⁷⁾ during the expiration phase, the pressure in the system would not increase much because the reservoir bag can absorb this volume fluctuation. The only exception is when the patient increases peak expiratory flow rate significantly such as during coughing.

The factors contributing to these defects were due to the lack of a check up procedure, faulty technique, and failure to check equipment. These reflect the inadequacy of the current check up protocol and the personnel's responsibility to perform this. All the contributing factors were human error and negligence which were similar to studies from the United States^(1,16,19) and Australia⁽²⁰⁾.

SUMMARY

The survey of 38 anesthesia scavenging systems in a teaching hospital revealed that 26.3 per cent were incorrect assembly and 44.7 per cent had a defect of APL valve in the breathing systems. All negative and positive pressure relief valves functioned normally. Incorrect assembly was potentially hazardous to the patients because, in some circumstance, the negative pressure relief valve may not be included by this test. The important contributing factors were lack of a check up procedure, failure to check equipment properly, and using a faulty technique. All were due to human error and negligence of guidelines. We suggest that routine pre-use check up together with regular maintenance should be emphasized and all personnel should be encouraged to learn more about safety precaution.

ACKNOWLEDGEMENT

We greatly appreciate the kind advice given by Dr Jane Hardy in relation to the preparation of this manuscript.

REFERENCES

1. Azar I, Eisenkraft JB. Waste anesthetic gas spillage and scavenging systems. In: Ehrenwerth J, Eisenkraft JB, eds. *Anesthesia equipment: Principles and applications*. St Louis: Mosby-Year Book, 1993: 114-39.
2. Knill-Jones RP, Rodrigues V, Moir DD, Spence AA. Anaesthetic practice and pregnancy: Controlled survey of woman anaesthetists in the United Kingdom. *Lancet* 1972; 1(7764): 1326-8.
3. Knill-Jones RP, Newman BJ, Spence AA. Anaesthetic practice and pregnancy: Controlled survey of male anaesthetists in the United Kingdom. *Lancet* 1975; 2(7939): 807-9.
4. Cohen EN, Brown BW, Bruce DL. Occupational disease among operating room personnel: A national study. *Anesthesiology* 1974; 41: 321-40.
5. Bruce DL, Bach MJ, Arbit J. Trace anesthetic effects on perceptual, cognitive and motor skills. *Anesthesiology* 1974; 40: 453-8.
6. Sharrok NE, Leith DE. Potential pulmonary barotrauma when venting gases to suction. *Anesthesiology* 1977; 46: 152-4.
7. Tavakoli M, Habeeb A. Two hazards of gas scavenging. *Anesth Analg* 1978; 57: 286-7.
8. Hamilton RC, Byme J. Another cause of gas scavenging line obstruction (correspondence). *Anesthesiology* 1979; 51: 365.
9. Abramowitz M, McGill WA. Hazard of an anesthetic scavenging device (correspondence). *Anesthesiology* 1979; 51: 276.
10. Mor ZF, Stein ED, Orkin LR. A possible hazard in the use of scavenging system. *Anesthesiology* 1977; 47: 302-3.
11. Patel KD, Dalal FY. A potential hazard of the Drager scavenging interface system for wall suction. *Anesth Analg* 1979; 58: 327-8.
12. Sharrock NE, Gabel RA. Inadvertent anesthetic overdose obscured by scavenging. *Anesthesiology* 1978; 49: 137-8.
13. Somprakit P, Luangnateethep A, Soontranan P. Hazards of scavenging system: Four incident reports of hits and near hits. *Thai J Anesthesiol* 1996; 22: 60-2.
14. Soontranan P, Lertakyamanee J, Somprakit P. Hazards of anesthetic equipment: Fifty consecutive incidents. *Thai J Anesthesiol* 1996; 22: 10-22.
15. Webb RK, Russell WJ, Klepper I, Runciman WB. Equipment failure: An analysis of 2000 incident reports. *Anaesth Intens Care* 1993; 21: 763-7.
16. Cooper JB, Newbower RS, Kitz RJ. An analysis of major errors and equipment failure in anesthesia management: Considerations for prevention and detection. *Anesthesiology* 1984; 60: 34-42.
17. Ward CS. Atmospheric pollution. In: Ward CS, ed. *Anaesthetic equipment*, 2nd ed. Eastbourne: WB Saunders, 1985: 272-87.
18. Ward CS. Medical suction apparatus. In: Ward CS, ed. *Anaesthetic equipment*, 2nd ed. Eastbourne: WB Saunders, 1985: 288-94.
19. Cooper JB, Newbower RS, Long CD, McReek E. Preventable anesthesia mishaps: A study of human factor. *Anesthesiology* 1978; 49: 399-406.
20. Runciman WB, Sellen A, Webb RK, et al. Errors, incidents and accidents in anaesthetic practice. *Anaesth Intens Care* 1993; 21: 506-19.

การสำรวจระบบกำจัดก๊าซส่วนเกินในโรงพยาบาลของโรงพยาบาลแห่งหนึ่ง

ปรีชา สุนทรานันท์ พ.บ.*, จริยา เลิศอวรมย์มนี พ.บ.*,
ประดิษฐ์ สมประกิจ พ.บ.* , สุคณึง สุรเชษฐพงษ์ ว.บ. *

มลภาวะยาดมสลบบันบับเป็นปัญหาที่ก่อให้เกิดอันตรายต่อบุคลากรที่ทำงานในห้องผ่าตัด การติดตั้งระบบกำจัดก๊าซส่วนเกินและการจัดการระบบอากาศที่เหมาะสมสามารถลดมลภาวะยาดมสลบได้มากกว่าร้อยละ 90 แต่ในขณะเดียวกันการใช้ระบบนี้ทำให้อุปกรณ์สีสัญญีมีความซับซ้อนมากขึ้น และอาจเพิ่มอันตรายให้กับผู้ป่วยได้ถ้าไม่ได้รับการตรวจสอบและซ้อมบ่ำรุ่งอย่างถูกต้อง มีรายงานความผิดปกติของระบบนี้และทำให้ผู้ป่วยรายหนึ่งเกิด pneumothorax รุนแรง ทำให้ต้องทำการสำรวจระบบกำจัดก๊าซส่วนเกินที่ใช้งานอยู่ทั้งหมดในโรงพยาบาลของโรงพยาบาลแห่งหนึ่ง โดยใช้คุณภาพการตรวจสอบอุปกรณ์ที่กำหนดขึ้นเพื่อค้นหาความผิดปกติซึ่งอาจແຜงอยู่ ผลการสำรวจพบว่ามีระบบกำจัดก๊าซส่วนเกินอยู่ 38 เครื่อง เป็นแบบ close active scavenging system แบบเดียวกันทั้งหมด ใช้งานมานานประมาณ 3 ปี ตรวจสอบความผิดปกติในการติดตั้ง 10 เครื่อง (ร้อยละ 26.3) ได้แก่ ไม่ต่อหัวน้ำก๊าซทั้ง ไม่มีข้อต่อขนาด 19 มม. ของระบบ มีน้ำซึ่งอยู่ในหัวน้ำก๊าซทั้ง ไม่ติดตั้ง reservoir bag และไม่ต่อหัวดูดก๊าซทั้ง เป็นต้น ไม่พบความผิดปกติของลินนารายางดันลม (negative pressure relief valve) ของทุกเครื่อง เมื่อทำการตรวจสอบ โดยกดปุ่ม flush valve ของอุปกรณ์เข้าสู่ระบบ พบว่ามีแรงดันบวกภายในระบบเกินค่ามาตรฐาน (+10 ซม.น้ำ) จำนวน 17 เครื่อง (ร้อยละ 44.7) ซึ่งเมื่อตรวจสอบรายละเอียดเพิ่มเติมพบว่าเกิดจากความผิดปกติที่ APL valve ของระบบหายใจ ไม่ใช้เป็นความผิดปกติของลินนารายางดันบวกของระบบกำจัดก๊าซส่วนเกิน ปัจจัยที่ทำให้เกิดความบกพร่องดังกล่าวเกิดจากการตรวจสอบระบบที่ด้อยประสิทธิภาพ ซึ่งอาจเป็นเพราะไม่มีคุณภาพการตรวจสอบ ผู้ใช้งานละเลยไม่ทำความสะอาดค่านะบ่าและไม่มีการบำรุงรักษาอย่างสม่ำเสมอ เนื่องจากผลสำรวจนี้ พบอุบัติการณ์ความผิดปกติในอัตราที่สูง ผู้ศึกษาจึงเสนอให้ต้องมีการตรวจสอบอุปกรณ์เป็นประจำและต้องมีการบำรุงรักษาอย่างสม่ำเสมอ นอกจากนี้ยังต้องเน้นให้บุคลากรทุกคนศึกษาหาความรู้เพิ่มเติมเกี่ยวกับข้อควรระวังเพื่อความปลอดภัยด้วย

คำสำคัญ : วิสัญญีวิทยา, อุปกรณ์, อันตราย, ความปลอดภัย, ระบบกำจัดก๊าซส่วนเกิน

ปรีชา สุนทรานันท์, จริยา เลิศอวรมย์มนี,

ประดิษฐ์ สมประกิจ, สุคณึง สุรเชษฐพงษ์

จุฬาลงกรณ์มหาวิทยาลัย 2545; 85 (ฉบับพิเศษ 3): S824-S829

*ภาควิชาวิสัญญีวิทยา, คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล, กรุงเทพฯ 10700