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Recently, many researchers undertaking health technology assessment of screening or vaccination programs for
infectious diseases have opted for dynamic transmission models for their analysis, rather than the typical static models
(Markov and decision tree), as they are better at predicting the indirect effects of interventions, such as those that may affect
disease transmission within the interested population or the ecology of the pathogen. Nevertheless, these models have not yet
become part of the traditional tool box of health economists, due in part to the fact that the results are complex and difficult to
analyze, requiring extensive computational skills. This paper aims to provide an overview of the concept of a dynamic
transmission models and outline recommendations on how best to determine whether a dynamic approach is appropriate

when evaluating health technologies and interventions for infectious diseases.
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Since the mid-1990s, the number of studies
on the evaluation of health technologies and
interventions related to infectious diseases has
increased significantly®. This rise in interest seems to
have been the result of a number of changes that
occurred in the last two decades, including the rising
incidence and spread of certain infectious diseases,
better understanding of the causes of various infectious
diseases, and above all, the development of novel
vaccines that can be used to prevent infection. One
recent systematic review showed that, of the economic
evaluation studies published between 1990 to 2009,
the proportion of economic evaluations that examined
infectious diseases rose from 8% to 13%, with most of
these evaluating vaccines®. Vaccination programs,
especially universal vaccination programs, are widely
regarded as worthwhile interventions, and their use in
public health programs is often assumed to be cost-
effective®. However, whether a vaccination program
is cost-effective will depend on a variety of factors,
including the efficacy of the vaccine, acceptance rates,
prices set, and society’s willingness-to-pay. Therefore,
the value of such interventions will vary according to
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the specific context within which the decision-making
and implementation is taking place; this can be seen
in recent evaluations of vaccines for the Human
immunodeficiency virus (HIVV) and Human Papilloma
virus (HPV), which showed marked differences in value
depending on the context of the program®®.

Mathematical modelling can be used to
simulate the progression of infectious diseases. In the
public health arena, these models are usually used to
evaluate public health policies by forecasting
incidences of emerging diseases resulting from
different policy scenarios, such as livestock culls, travel
restrictions, school closures, or isolation and quarantine
of infected persons/animals. Recently, many
researchers undertaking health technology assessment
of screening or vaccination programs for infectious
diseases have opted for mathematical models
(sometimes referred to as dynamic transmission models
or dynamic models) for their analysis, rather than the
typical static models (Markov and decision tree),
as mathematical models are better at predicting the
indirect effects of such interventions. However, the
use of dynamic models in health technology
assessment is relatively new, and these models require
inputs from a multidisciplinary standpoint, to ensure
that they offer an accurate method for analysis.

The use of these models is becoming
increasingly recognised by the international community.
The World Health Organisation, for instance, has
developed a set of guidelines for economic evaluations
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of immunisation programs, with a chapter outlining a
clear justification for the use of static or dynamic models
for this purpose®. Moreover, the ISPOR-SMDM
Modelling Good Research Practices Task Force recently
published a set of good practices that should be
adopted when using dynamic transmission models for
economic evaluations”®, This paper hopes to add to
this growing body of evidence and analysis by
providing a clear summary of the concept behind
dynamic transmission models and by outlining
suggestions for the appropriate use of the dynamic
approach when evaluating health technologies and
interventions for infectious diseases.

Principle of dynamic transmission model

Static models and dynamic models differ
predominantly through the way that they use infection
rates (force of infection?). In static models, infection
rates are either constant over time or vary according to
personal characteristics such as age. In contrast, the
infection rates used in dynamic models depend on the
contact pattern, transmissibility, and distribution of the
infected population over time, meaning that the infection
rate is not constant.

Health technologies that are used in the
treatment or prevention of infectious diseases—such
as vaccinations—provide individuals with protection
against specific infections. Vaccinations also reduce
the rate of infection in the community within which
those who are vaccinated live, by limiting the risk of an
outbreak of the infectious disease. This is true only as
long as a critical portion of a given community has
been immunized against a contagious disease, which
allows the spread of the infectious disease to be
contained. This is known as “herd immunity”. An
example of this can be seen in the eradication of
smallpox, which resulted from a global vaccination
program®. These kinds of indirect effects can be seen
not only in vaccination programs but also in health
interventions such as the screening and treatment for
sexual transmitted diseases®*?. However, not all indirect
effects resulting from health interventions benefit
society. For instance, vaccination programs may also
result in negative effects for a society. This can be
seen in one case from the UK, where a pneumococcal
conjugated vaccine program caused a pathogen strain
replacement in the community within which it was
implemented as well as in the case where a childhood
vaccination program for the varicella-zoster virus
resulted in age-shifting, where the disease began
breaking out in other age group populations®2),
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Dynamic transmission models are useful for
evaluating technologies that affect disease
transmission within the interested population or
ecology of the pathogen. If such interventions or
technologies do not affect the force of infection, a static
model may be used instead.

Model structures

In any economic evaluation, modeling the
disease pathway accurately is a crucial step in
determining which model is most appropriate.
Depending on the natural history of the infection,
various “compartments”—more widely known as health
states—are defined for the model. These are usually set
as susceptible, pre-infectious, infectious, and
recovered/immune. The susceptible (S) state represents
those who are at risk of infection. The pre-infectious
(E) state occurs when an infected person is not yet
able to pass the disease on to others but may become
infectious in the future, while the infectious (I) state is
the state in which a person becomes infectious. The
recovered/immune state (R) is where a person becomes
immune or has recovered from the infectious state.

As mentioned earlier, to determine which
model is most appropriate, a full understanding of the
disease pathway is essential. For example, in a case
where an individual becomes infected with a disease
and is re-infected again, a Susceptible-Infected-
Susceptible (SIS) model may be deemed most
appropriate. However, if the disease is curable, then a
Susceptible-Infected-Recovered (SIR) model may be
more appropriate. Examples of disease transmission in
infectious diseases are shown in Fig. 1. Transmission
models shown in Fig. 1 are appropriate when modeling
a disease where transmission is between humans.
However, when dealing with diseases that involve non-
human hosts (parasites) such as Helminths and
Anthropods, a model representing a disease pathway
within the non-human hosts may also be necessary®,
Once a disease pathway has been developed, the next
step in developing the model is to identify the pathway
of the technology of interest. Where a vaccination
program is introduced, those who were previously
recognised as susceptible and had been vaccinated
would shift to the immune stage, given the vaccine
efficacy and coverage. Fig. 2 illustrates the pathway of
population shifting from the susceptible compartment
to the recovered/immune compartment in the SEIR
model.

Once the structure of the transmission disease
has been determined, the differential equations to
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when considering vaccination.

represent the transition of the population between each
compartment are then defined in order to calculate the
population in each compartment at a given point in
time. Afterwards, the costs and outcomes of each event
are calculated. An example of the set of differential
equations for a SEIR model with effect from vaccination
in birth cohorts is listed below:

%) =b(L-V)N®)-A1)S®-mS ()
% =2 () S (t) - fE (t) - mE ()

dli_t(t) =fE () - rl (t) - ml (t)

% = bWN (t) + rl (t) - MR ()

where,

S(t) denotes the number of susceptible
individuals at time t; E(t) denotes the number of
individuals in the latent period of infection at time t;
I(t) denotes the number of infectious individuals at
time t; R(t) denotes the number of individuals who
recovered from the disease or were immune at time t;
N(t) denotes the total population of interest at time t; b
denotes the birth rate, or the rate at which individuals
enter the specific population; m denotes the death rate,
or the rate at which individuals exit the specific
population; v denotes the proportion of individuals
receiving vaccination; f denotes the rate of onset of
infectiousness; r denotes the recovery rate; and A (t)
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is the rate at which susceptible individuals become
infected per unit time at time t, also known as the force
of infection. Similar to the development of a typical
static model, the identification of input parameters is
important. Specific parameters used in the dynamic
transmission model are shown below:

Force of infection, A (t)

The force of infection is a function of the
number of infected individuals in the population and
its contact rate between the infected individuals and
susceptible individuals:

A’t: Blt

Where |, denotes the number of infected
individuals at time t, and § denotes the ability of
successful infections (per capita rate), which depends
on the spread of disease. The ability of successful
infections depends on the route of transmission (i.e,
whether respiratory, sexual, or vector-borne) and the
density of the population. For example, a respiratory
infection will spread at a higher rate in urban areas
compared to rural areas (higher value of §), and a disease
is transmitted by mosquitoes, the infection rate is likely
to be higher in slum areas than in open-air areas. Other
factors such as the age of the population, the distances
and frequency of population travel within the area also
play an important role. Therefore, it is difficult to obtain
B directly. Instead, it is calculated using the formula
below, given that the individual in the population mixes
randomly:

RO
B= ND

N is the total population and D is the amount
in time for disease spread; R is the basic reproduction
number, meaning the average number of secondary
infectious persons resulting from one infectious person
in the susceptible population. If the basic reproduction
number is greater than 1, it describes the point where
the epidemic starts. Fig. 3 illustrates the basic
reproduction number equal to 5.

When introducing a national vaccination
program, herd immunity can—theoretically at least—be
reached, given the size of vaccine coverage. This
coverage is set as a key target of the program and
referred to as the herd immunity threshold (HIT). It is
related to R and can be calculated as follows:

1. L_R-1

HIT=1- R~ R

0
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Fig. 3  An example of a disease where the basic

reproduction number (R)) is equal to 5 (adapted
from Wnnycky, E. and White, R.G., 2010)®4.

Event rates

The event rate is the rate at which the
population shifts between each compartment. In
general, the rates are sometimes fixed. For example, the
pre-infectious period is 2 days; therefore, the pre-
infectious rate is equal to 0.5 per day. Therefore, setting
the time step-size is very important as it will have an
effect on the calculation, similar to setting the cycle
length when using a Markov model. Infectious diseases
usually have a small unit of time step-size, either in
days or months unless they are for long-term infections.
It is worth noting that the risk or the probability—the
proportion of such event in each time step—should be
used technically. However, the risk is approximately
equal to the rate when the rate is small®. The
relationship between rate and risk is shown as follows:

risk=1-e"e

Important elements that need to be considered when
conducting an economic analysis of interventions for
infectious diseases using a dynamic transmission
model

Before using the number of infectious
populations resulting from a dynamic model, the model
needs to be validated through the use of local data
such as the size of the infectious population at a given
point in time. However, within developing countries,
many epidemiological data like these are fragmented.
Moreover, nationally-represented epidemiological data
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are sometimes collected passively from compulsory
notifications and reporting from provincial hospitals
and may require further tests to confirm the types of
strains to which they refer. In addition, for some
infections where hospitalization is not usually required,
the data reported in the national surveillance may be
understated. Active surveillance is, therefore,
preferable. However, active surveillance usually
requires additional resources that are often unavailable,
and the data themselves may not be widely applicable,
given that any information gathered may only be
relevant to areas within which the samples have been
collected.

An example of the limitations of available data
can be seen with dengue fever in Thailand. The
surveillance system in Thailand does not require
laboratory confirmation to report dengue infection
cases, and recent research revealed that passive
surveillance is likely to underestimate incidence of
dengue fever significantly when compared to rates
revealed by active surveillance. Fig. 4 illustrates another
example of the comparison between observed and
predicted cases of influenza in Thailand; this example
was chosen because national data are available.

Result presentation

When presenting results of economic
evaluations of programs concerned with preventing or
treating infectious diseases, researchers should ensure
that all transmission dynamics, including the incidence
or prevalence of the disease, should be reported over
time. If the particular intervention or technology is able
to cause herd immunity within the population, the
effects of the technology should be presented
separately as direct and indirect effects (see example in
Fig. 5). Where applicable, the results should also outline
any relevant information specific to the infectious
disease, such as strain replacement or the development
of drug resistance. A sensitivity analysis should also
be conducted for important input parameters. For
transparency, the initial values and the set of differential
equations should be provided. For more information
on appropriate results presentation, please refer to the
guidelines of the ISPOR-SMDM Modeling Good
Research Practices Task Force"®.

Although the demand for the use of dynamic
transmission models in evaluations of health
technologies for infectious disease is on the rise, they
have not yet become part of the traditional toolbox of
health economists, due in part to the fact that the results
are complex and difficult to analyse, requiring extensive
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An example of observed cases (dots) and predicted
cases with 95% prediction intervals (shown via
the dashed line and the shaded area, respectively)
from the transmission model®®.

® Non-hospitalised cases  ® Hospitalised cases - DF - ® Hospitalised cases - DHF/DSS @ Death

160,000
140,000

120,000

¥y 3 3 m
20,000 4 .y = ns s
100,000 4
BOB00 .t
) =1
: I . l l I
o B
<2 (24| 15+ | <2 |24 | 15+ | <2 204 | 15+ | <2 [ 204 15+ | <2 | 204 | 15+
Year 2 Year 3 Year 4 Year §

Year |

ried for policy 1

Number of symptomatic
dengue infections averted and

deaths

Fig. 5  An example of the predicted number of dengue
cases averted, resulting from a hypothetical mass
vaccination of dengue vaccine in children aged 2-14
years old (Policy 1). The direct effect of the vaccine
is represented in the 2-14 age group, and the indirect

effect is shown in the other age groups®®.

computational skills. Moreover, there may be times when
researchers must present very complex data to non-
technical decision-makers. In this case, while the
comprehensibility of the data may be enhanced, the
transparency of the analysis may be somewhat limited.
Dynamic transmission modeling also requires
numerous data, which may be a challenge, particularly
in developing countries where good epidemiological
data are not always available. In these cases, reasonable
assumptions must be made, but this does allow the
possibility of bias in the results.

Guidelines for Health Technology Assessment in
Thailand (second edition): Recommendations for
economic evaluation of infectious diseases

The most important step in evaluating
technologies for infectious diseases is to understand
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whether a dynamic model is needed. For a dynamic
model to be used in the economic evaluation, at least
one of criteria below should be fulfilled:

1. The technology has an effect on the force
of infection in the studied population.

2. The technology has an effect on the ecology
of pathogen, such as strain replacement and
antibacterial resistance.

3. The technology has an effect on the
pathogenicity or the transmissibility of the disease,
justified by the infection rate among other age groups.

4. The comparators of the interested
technology have an impact on the infection rate.

5. There is a need for observing the incidence
of the disease.

If none of the above criteria are met, a static
model should be used. Moreover, a static model can
also be used when existing studies with similar context
show that certain technologies may represent good
value-for-money. This is applicable for technologies
known to have positive externalities, as the dynamic
perspective will provide a more favourable incremental
cost-effectiveness ratio.
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