

Coarctation of the Aorta in Children at Siriraj Hospital

DUANGMANEE LAOHAPRASITIPORN, M.D.*,
APICHART NANA, M.D.*,
KRITVIKROM DURONGPISITKUL, M.D.*
SOMCHAI JARUCHAROENPORN, M.D.*,
JARUPIM SOONGSWANG, M.D.*

Abstract

A retrospective analysis of 33 children who were diagnosed to have coarctation of aorta at Siriraj Hospital between January 1989 and December 1998 was undertaken. There were 21 males (64%) and 12 females (36%). Their ages ranged from one day to 11 years (median 2 months). The majority of the patients (78.8%) were presented early within the first year of life. The predominant clinical manifestations were congestive heart failure (69.6%), systemic hypertension of the upper extremities (36.3%) and decreased femoral pulses. Chest roentgenogram revealed cardiomegaly (70%) and increased pulmonary blood flow (84%), reflecting congestive heart failure and associated left-to-right shunting. Electrocardiogram showed normal pattern (33.3%), right ventricular hypertrophy (33.3%), left ventricular hypertrophy (22.2%) and biventricular hypertrophy (11.2%). The younger the patient is, the more right ventricular predominance is demonstrated. According to the echocardiogram and/or aortogram, juxtaductal type was found in 51.5 per cent, postductal type in 27.3 per cent and preductal type in 21.2 per cent. Medical management included prostaglandin E₁ infusion in a newborn baby presented with low-cardiac output state, anticongestion and anti-hypertension, if indicated, followed by surgical correction. The result of coarctectomy with end-to-end anastomosis with or without arch augmentation was good. The operative mortality rate was 5 per cent. The overall mortality in the present study was 9 per cent. The most common causes of death were multiorgan failure and pulmonary infection. Residual coarctation was found in 5 per cent.

Key word : Coarctation of Aorta, Children

**LAOHAPRASITIPORN D, JARUCHAROENPORN S, NANA A,
SOONGSWANG J, DURONGPISITKUL K**
J Med Assoc Thai 2000; 83 (Suppl. 2): S89-S97

* Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

Coarctation of the aorta (CoA), derived from Latin verb *arctare*, means to make tight. It is used to describe a narrowing aorta (Ao), most commonly in the thoracic descending Ao. True CoA results from a localized thickening of the aortic media, which protrudes from the posterior and lateral wall into the lumen of the vessel and obstructs blood flow(1).

It has been cited that 9 per cent of all children with congenital heart disease have some degree of CoA. As a dominant lesion, it ranks as the fourth most common cardiac defect causing symptoms in infancy (between 0.20 and 0.62 patients per 1000 livebirths) and accounts for 7.5 per cent of critically ill infants with heart disease(2). At Siriraj Hospital, in 1997, we found CoA 2.1 per cent of all congenital heart defects, the twelfth rank(3). As no clinical data of CoA in Thai children has ever been recorded, we would like to analyse our patients, compare to the Western study and imply our results to Thai patients.

PATIENTS AND METHOD

All patients were diagnosed as having CoA with or without simple congenital heart defects, e.g., ventricular septal defects, bicuspid aortic valve, etc., by echocardiogram and/or cardiac catheterization at the Department of Pediatrics, Faculty of Medicine Siriraj Hospital between January 1989 and December 1998 and were retrospectively analysed. The exclusion criteria of the present study was CoA associated with complex congenital heart

disease, e.g., single ventricle physiology lesion, transposition of the great arteries, etc.

Demographic data, clinical manifestations, chest roentgenogram, electrocardiogram including treatment and outcomes were evaluated.

RESULTS

A total of 33 CoA patients, during the study period of 10 years, were analysed.

Demographic data

The patients' age ranged from 1 day to 11 years (median 2 months). The weight ranged from 1.7 to 45.7 kg (mean 9.4 kg). The birth weight ranged from 1,750 to 4,980 g (mean 2,870 g). Twenty-one cases (64%) were male and 12 cases (36%) were female. The male: female ratio was 1.8:1.

Clinical manifestations

The distribution of age at presentation is shown in Table 1. The clinical manifestations at initial were described in Table 2.

Table 1. Age at presentation of patients (n = 33).

Age	Number (cases)	Frequency (%)
0 - 1 month	10	30.3
1 month - 1 year	16	48.5
1 - 5 years	1	3.0
> 5 years	6	18.2

Table 2. The clinical manifestations at initial in the present study (n = 33).

Variable	Number (cases)	Frequency (%)
Symptoms		
Tachypnea	20	60.6
Abnormal cardiac auscultation	8	24.3
Poor weight gain, poor feeding	3	9.1
Claudication	1	3.0
None*	1	3.0
Signs**		
Congestive heart failure	23	69.6
Hypertension of upper extremities	12	36.3
Asymptomatic murmur	8	24.2
Low cardiac output	2	6.6

* Incidentally, this patient was found to have systolic hypertension during acute hemorrhagic fever illness.

** One may have more than one clinical sign.

Only 28 cases (85%) were palpated four-extremity pulses at the first examination and all were able to be diagnosed CoA. In contrast to the remainders (5 cases), they were not palpated the four-extremity pulses and initially missed the diagnosis. Systolic murmur was heard in 31 cases (93.9%), continuous murmur in 1 case and no record in 1 case.

Systolic blood pressures between the upper and lower extremities were compared and demonstrated in Table 3. The majority (91%) had upper extremity pressure greater than or equal to the lower extremity one. In the hypertensive patients (12 cases, 36.3% of total cases), all were under 1 year old, except one. The systolic blood pressure ranged from 94 to 163 mmHg (mean 120 mmHg) and the diastolic pressure ranged from 57 to 97 mmHg (mean 60 mmHg). The distribution of age in these patients is shown in Table 4. All presented

congestive heart failure, except one case who was incidentally discovered with hypertension during acute hemorrhagic fever illness.

Investigations

Chest roentgenogram revealed cardiomegaly (70%) and increased pulmonary vasculature (84%). Rib notching was found in 1 case, an 11-year-old boy. Electrocardiogram is described in Table 5. Echocardiogram and/or cardiac catheterization findings were classified into preductal, juxta-ductal and postductal CoA. According to the classification, we compared our results to the Smallhorn's study⁽⁴⁾ as shown in Table 6. Seven cases (21.3%) had mild CoA. Thirty-six per cent (7 out of 19 cases) had a transverse aortic arch diameter less than 50 per cent of the ascending Ao diameter. Isolated CoA was found in only 4 cases (12%). The majority were associated with congenital left-to-right shunt lesions.

Table 3. The comparison of systolic blood pressure between upper and lower extremities (ext.) in the present study (n = 33).

Systolic blood pressure values	Number (cases)	%
Upper ext. = lower ext.	6	18
Upper ext. > lower ext. 10-20 mmHg	5	15
Upper ext. > lower ext. > 20 mmHg	19	58
Upper ext. < lower ext. (normal)	3	9

Table 4. Distribution of age in the systolic hypertension patients in the present study (n = 12).

Age	Range (Mean, mmHg)	Number (cases)	%
0 - 1 month	112-127 (119.5)	2	16.6
1 month - 1 year	94-138 (116.0)	9	75.0
> 1 year	163	1	8.4

Table 5. Electrocardiogram (ECG) findings in the present study (n = 33).

ECG pattern	Age		Number (cases)	%
	Range	Mean		
RVH	1 day - 3 months	1 month	11	33.3
LVH	14 days - 11 years	4 years	7	22.2
BVH	1 day - 6 months	2.8 months	4	11.2
Normal	1 day - 11 years	32 months	11	33.3

RVH, right ventricular hypertrophy; LVH, left ventricular hypertrophy; BVH, biventricular hypertrophy

The associated congenital heart defects in the present study were compared to the Cobanoglu's study(5) (Table 7).

Treatment (Table 8)

Prostaglandin E₁ was established in 2 cases, presenting low-cardiac output state and later, referred to surgery. Twenty cases (60%) underwent surgical repair. Eighty per cent of our cases performed coarctectomy with end-to-end anastomosis. Their mean age at surgery was 18.5 months (range 8 days to 14 years). There were 7 cases (35%) that underwent surgery at less than 3 months. Percutaneous transluminal catheter intervention, balloon angioplasty, was performed in 1 case of native CoA, with a good result.

Outcomes and follow-up

Twenty-three cases were regularly followed up, with the follow-up period ranging from 3 months to 10 years (mean 2.8 years). Seven cases were lost

Table 6. The comparison of the coarctation type between the present study and the Smallhorn and associates' study(4).

Type	The present study		Smallhorn, et al	
	no.	%	no.	%
Preductal	7	21.2	40	83.3
Juxtaductal	17	51.5	5	10.4
Postductal	9	27.3	3	6.3

Table 7. The associated congenital heart defects in the present study (n = 29), compared to the Cobanoglu and colleagues' study(5) (n = 134).

Associated lesion*	The present study,		Cobanoglu, et al.	
	cases	%	cases	%
Ventricular septal defect	17	51	71	53
Patent ductus arteriosus	20	60	85	63
Atrial septal defect	3	9	31	23
Bicuspid aortic valve	6	18	26	19
Hypoplastic arch	13	39	-	-
Aortic stenosis	3	9	9	7
Double-outlet right ventricle	1	3	7	5
Aortic regurgitation	2	6	3	2

*One may associate with more than one lesion.

Table 8. Management of coarctation in the present study (n = 33).

Treatment	Number (cases)	%
Medication		
Anticongestive heart failure	23	69.6
Antihypertensive	14	42.4
Prostaglandin E ₁	2	6.0
Surgery		
Coarctectomy with end-to-end anastomosis	16	80.0
Extended coarctectomy	3	15.0
Left subclavian flap angioplasty	1	5.0
Catheter intervention		
Balloon angioplasty	1	3.0
None		
Mild coarctation	7	21.0
Severe coarctation*	5	15.0

* Including 1 case who denied treatment, 2 cases who lost follow-up, and 2 cases who died preoperatively

to follow-up. There were 2 cases that died before the operation (at the age of 15 days and 1 month) and 1 case died after the operation. The overall mortality was 9 per cent with the operative mortality of 5 per cent. The causes of preoperative death were multiorgan failure due to a low-cardiac output state in one case and congestive heart failure and severe pulmonary hypertension in the other case. In post-operative death, the patient developed renal failure requiring peritoneal dialysis and pneumonia requiring long-period respiratory support since the admission. Eventually, he underwent surgery. However, chronic lung disease and cor pulmonale were developed. Sepsis was the cause of death.

The majority of the cases (21 cases, 91%) have been asymptomatic. In the hypertensive group, 9 cases underwent surgical correction with only 1 case (11%) having persistently postoperative hypertension. Mild residual CoA occurs in 1 case. A coarctectomy was performed with end-to-end anastomosis since the age of 17 days, and followed for 10 years symptom-free. The case who underwent balloon dilation of CoA had severe hypertension and has been normotensive after the procedure, asymptomatic for 3 years.

In patients associated with ventricular septal defect (VSD) where the small defect was not closed (9 cases), we found that VSD becomes smaller in 1 case (11%). However, all have been asymptomatic and free of medication.

DISCUSSION

Coarctation of the aorta (CoA) is a common congenital heart disease in children aged 1 to 4 years. It accounts for 5-8 per cent of the patients⁽¹⁾ and ranks as the fourth most common congenital heart defect.⁽²⁾ There is some suggestion that CoA is less common in Asian children,⁽¹⁾ as we found 2.1 per cent of all congenital heart defects, it was the twelfth rank in 1997⁽³⁾. Although a striking male-to-female ratio of discrete CoA, with more than two-thirds of patients being male, has been reported, this ratio is less evident in infants⁽¹⁾. In the present study, 78.8 per cent of the patients presented it within the first year of life and the male-to-female ratio was 1.8:1.

Anatomy

Adult CoA or postductal CoA is named when a short-segment abruptly narrows just beyond the insertion of the patent ductus arteriosus (PDA)

or ligamentum arteriosum. The symptoms usually occur in adults. Infantile CoA, or preductal CoA is characterized by more diffuse narrowing of the aortic segment and isthmic constriction which is beyond the origin of the left subclavian artery but proximal to PDA. PDA shunts blood from the pulmonary artery into the descending Ao beyond the obstruction. It usually associates with significant congenital heart defects. Juxtaductal CoA is considered when the narrow point is opposite to the vestigial ligamentum or PDA insertion and almost always just beyond the left subclavian artery insertion, which is usually involved. A longer narrowed segment, tubular hypoplasia of the Ao, is a combination of small diameter and abnormal length, involving transverse Ao and isthmus and invariably producing obstruction. Most commonly, true tubular hypoplasia of the transverse Ao occurs in conjunction with isthmic narrowing and stenosis (true CoA)⁽⁶⁾. In the present study, the most common type of CoA is juxtaductal (51.5%, Table 6), compared to the Smallhorn's study in which preductal CoA is the most common type (83.3%)⁽⁴⁾.

Clinical manifestations

A severe-CoA infant may present, as early as the third or fourth day of life, with symptoms of advanced congestive heart failure. Sixty per cent of infants with congestive heart failure are hospitalized before the fourteenth day of life⁽⁷⁾. Normally, the left ventricle is under stress at birth and it may fail with the added severe CoA. This results in left atrial hypertension, persistence or resumption of fetal pulmonary hypertension, and right-to-left shunting through the PDA. The foramen ovale may be open, allowing left-to-right shunting and further aggravating the increasing pulmonary and left atrial blood flow. With the spontaneous closure of ductus arteriosus, the left ventricle assumes the added load of lower body perfusion, leading to more congestive heart failure and more pulmonary hypertension. The infant becomes acute, serious and even in low-cardiac output state. Seventy per cent of our patients presented with congestive heart failure within the first year of life. There were 2 cases manifesting with low-cardiac output state.

When VSD is associated, the usual infant with CoA becomes sick at an earlier age than does one with CoA or VSD alone. VSD carries a larger left-to-right shunt, being proportionate to the severity of CoA as well as to the size of defect⁽²⁾.

According to Shinebourne's report,(8) major associated cardiac lesions were found in 85 per cent of neonates and in approximately 50 per cent of infants. In the present study, isolated CoA was found in only 12 per cent.

Physical examination

Comparisons of the right and left brachial and femoral pulses are important clues in the diagnosis of CoA(1,2,9). The higher systolic blood pressures in the arm than in the leg of 20 mmHg or greater are sufficient to indicate the CoA. In the present study, we could diagnose CoA at the first examination in 85 per cent of patients by palpating the four-extremity pulses. Hypertension in the upper extremities, invariably present, may not directly reflect the severity of obstruction and may not be extreme. Thirty-six per cent of our patients had hypertension and 91 per cent of these patients were under 1 year.

Examination of the CoA patient should be systematically performed with an attempt to explain the auscultatory findings rather than with the prejudice that a particular murmur is characteristic of CoA. A murmur may be generated from the coarctation itself or collateral vessels or associated heart lesion(1).

Electrocardiogram (ECG)

The ECG of CoA infants is often abnormal and usually reflects coexistent anatomical defects(10). In neonates, the ECG is usually accompanied by evidence of right ventricular hypertrophy or right bundle branch block. Left ventricular hypertrophy is apparent with more severe or long standing coarctation, though the normal ECG is often obtained in children, as seen in 33 per cent of our patients. Right bundle branch block is found in approximately 50 per cent of adults and older children and reflects a stage in progression from neonatal right ventricular hypertrophy(10).

Chest roentgenogram (CXR)

In infantile CoA, CXR is altered by associated defects, increased pulmonary vascular markings in left-to-right shunting, or venous congestion in severe CoA, or associated left heart obstruction. In older children, the typical CoA CXR shows normal heart size and normal pulmonary markings, unless there is an associated intracardiac shunt or

left ventricular failure. The "3 sign" may be seen in AP view. Rib notching is practically pathognomonic of thoracic CoA,(11) and most commonly seen bilaterally in the 4th to 9th posterior ribs. The incidence of rib notching increases with age, uncommon below age 5, although it was visible in 14 per cent of patients between 1 and 4 years of age(12). The majority of our patients (70%) had cardiomegaly and increased pulmonary marking (84%), reflecting the associated congenital left-to-right shunt lesion and congestive heart failure.

Management

Prostaglandin infusion is particularly applicable to the sick baby with severe heart failure or shock(13,14). Congestive heart failure is further improved by furosemide and inotropics. The goal of medical treatment is to stabilize the patient pre-operatively for surgery. Treatment of hypertension by medical means alone is usually impossible and causes danger(1). Surgical therapy remains the definite means of effective relief of obstruction. The hospital mortality in the current era is low (2% to 10%) in neonates undergoing an operation for isolated coarctation and hypoplastic left heart class I (uncomplicated coarctation), with or without PDA. When coarctation is repaired in older infants, children, adolescents and young adults, the early mortality is about 1 per cent.(15) The optimal time for surgery is considered when the patient is aged 5 to 7(1). However, most pediatric cardiologists recommend elective correction of CoA for all patients beyond the age of 3 years but before age 10, despite a lack of symptoms or severe upper extremity hypertension. It has been documented that the diameter of aorta at 3 years of age is 55 per cent of the diameter of adulthood(16). An uncomplicated CoA with a consistent systolic blood pressure gradient between the arms and legs of more than 20 mmHg is an indication for surgical correction(2).

Three preferred techniques are 1) resection and end-to-end anastomosis; 2) subclavian flap aortoplasty, and 3) synthetic patch aortoplasty,(17) as in our institute. The incidence of recurrent coarctation in CoA patients who underwent coarctectomy under the age of 3 months was lower in an end-to-end anastomosis operation compared to subclavian flap aortoplasty (5-year surgery free 92±5% vs 75±7%, respectively). However, operative mortality rate was not different(5). The overall mortality in

the present study was 9 per cent, and the operative mortality was 5 per cent. All patients who died were under 1 year of age.

Percutaneous transluminal angioplasty was demonstrated to be effective in patients who developed restenosis after the surgery(18-20). Aneurysm formation does not invariably occur, however, it is rare on short-term prospective follow-ups in some institutions(21). The use of dilation in infants is not clearly established. Histologic studies of patients with large areas of ductal tissue in the area of constriction project that balloon angioplasty will palliate only temporarily, and that restenosis is inevitable(22,23).

Natural history and complications

CoA was accompanied by a 90 per cent mortality by age 50. The mean age of death was 35 years. The causes of death were intracranial hemorrhage (11% of cases in autopsy series), aortic rupture or dissection (23%), endocarditis (22%), and congestive heart failure (18%)(24-26). Prolonged preoperative hypertension and surgery after the age of 25 are associated with a risk of premature cardiovascular death(1). The degree of preoperative hypertension has some influence on whether hypertension, thus, will recur or be poorly relieved by operation(27-29). Liberthson, and colleagues(30) followed 234 patients, 40-years postoperation, and found that the incidence of persistently postoperative hypertension in patients performing surgery at

the age of 1-5 years was 6 per cent, at the age of 6-18 years was 30 per cent, and at the age of 18 years up was 47 per cent. Aortic aneurysm is a long-term sequelae of repairs using patch graft and tubular graft techniques(31). Residual gradients and the need for reoperation are most often found when surgery is necessitated in a young patient of less than 2 months(2). The age, seemingly, has greater influence than the technique used(32). In one study, the reintervention rate for residual or recurrent coarctation was 9 per cent(17). In the present study, we had only 1 case who has mild residual CoA and no intervention is needed. He underwent surgery since the age of 17 days. However, long-term follow-up is required.

SUMMARY

Coarctation of the aorta is a common congenital heart disease. Comparison of the pulse and blood pressure between upper and lower extremities is an important clue for the diagnosis. Early diagnosis and proper intervention can reduce mortality and morbidity, especially in a sick baby with severe congestive heart failure and low cardiac output. The effective means to relieve the obstruction is surgical repair. However, percutaneous transluminal angioplasty has been demonstrated to be effective in patients who develop restenosis after the operation. Long-term follow-up is required to prevent complication, whether or not surgery is performed.

(Received for publication on September 22, 2000)

REFERENCES

1. Morris MJH, McNamara DG. Coarctation of the aorta and interrupted aortic arch. In: Garson A Jr, Bricker JT, Fisher DJ, Neish SR, eds. *The science and practice of pediatric cardiology*. 2nd ed. Vol. I. Baltimore: Williams & Wilkins, 1999: 1317-38.
2. Fyler DC. Coarctation of the aorta. In: Fyler DC, ed. *Nadas' pediatric cardiology*. Philadelphia: Hanley & Belfus, Inc., 1992: 535-49.
3. Laoaprasitiporn D, Nana A, Durongpisitkul K, et al. Heart disease in children: Siriraj Hospital. *Thai Heart J* 1999; 12: 73-82.
4. Smallhorn JF, Huhta JC, Adams PA, et al. Cross sectional echocardiographic assessment of coarctation in the sick neonate and infant. *Br Heart J* 1983; 50: 349-61.
5. Cobanoglu A, Teply JF, Grunnkemeier GL, et al. Coarctation of the aorta in patients younger than three months. *J Thorac Cardiovasc Surg* 1985; 89: 128-35.
6. Ho SY, Anderson RH. Coarctation, tubular hypoplasia and the ductus arteriosus. *Br Heart J* 1979; 41: 268-74.
7. Fyler DC, Buckley LP, Hellenbrand WE, et al. Report of the New England Regional Infant Cardiac Program. *Pediatrics* 1980; 65: 376-461.
8. Shinebourne EA, Tam ASY, Elseed AM, et al. Coarctation of the aorta in infancy and childhood. *Br Heart J* 1976; 38: 375-80.
9. Thoelle DG, Muster AJ, Paul MH. Recognition of

coarctation of the aorta. *Am J Dis Child* 1987; 141: 1201-4.

10. Ziegler RF. The genesis and importance of the electrocardiogram in coarctation of the aorta. *Circulation* 1954; 9: 371-80.
11. Railsback OC, Dock W. Erosion of the ribs due to stenosis of the isthmus (coarctation) of the aorta. *Radiology* 1929; 12: 58-61.
12. Sloan RD, Cooley RN. Coarctation of the aorta: The roentgenologic aspects of one hundred and twenty five surgically confirmed cases. *Radiology* 1953; 61: 701-21.
13. Heymann MA, Berman W Jr, Rudolph AM, Whitman V. Dilatation of ductus arteriosus by prostaglandin E1 in aortic arch abnormalities. *Circulation* 1979; 59: 169-73.
14. Leoni F, Huhta JC, Mackay DJ, et al. Effect of prostaglandin on early surgical mortality in obstructive lesions of the systemic circulation. *Br Heart J* 1984; 52: 654-9.
15. Blackstone EH, Jonas RA, Kouchoukos NT. Coarctation of the aorta and interrupted aortic arch. In: Blackstone EH, Jonas RA, Kouchoukos NT, eds. *Cardiac surgery*. Vol. 2. 2nd ed. New York: Churchill Livingstone 1993: 1263-325.
16. Moss AJ, Adams FH, O' Loughlin BJ, Dixon WJ. The growth of the normal aorta and of the anastomotic site in infants following surgical resection of coarctation of the aorta. *Circulation* 1959; 19: 338-49.
17. Castaneda AR, Jonas RA, Mayer JE, Hanley FL. Aortic coarctation. In: Castaneda AR, Jonas RA, Mayer JE, Hanley FL, eds. *Cardiac surgery of the neonate and infant*. Philadelphia: WB Saunders, 1994: 333-52.
18. Kan J, White RI, Mitchell SE. Treatment of restenosis of coarctation by percutaneous transluminal angioplasty. *Circulation* 1983; 68: 1087-94.
19. Cooper SG, Sullivan ID, Wren C. Treatment of recoarctation: balloon dilation angioplasty. *J Am Coll Cardiol* 1989; 14: 413-9.
20. Hellenbrand WE, Allen HD, Golinko RJ, et al. Balloon angioplasty for aortic recoarctation: results of valvuloplasty and angioplasty of congenital anomalies registry. *Am J Cardiol* 1990; 65: 793-803.
21. Morrow WR, Vick GW, Nihill MR, et al. Balloon dilation of unoperated coarctation of the aorta: short- and intermediate-term results. *J Am Coll Cardiol* 1988; 11: 133-8.
22. Pellegrino A, Devereux PB, Anderson RH, et al. Aortic coarctation in the first 3 months of life: an anatomopathologic study with respect to treatment. *J Thorac Cardiovasc Surg* 1985; 89: 121-7.
23. Russel GA, Berry PJ, Watterson K, et al. Patterns of ductal tissue in coarctation of the aorta in the first three months of life. *J Thorac Cardiovasc Surg* 1991; 102: 596-601.
24. Abbott ME. Coarctation of the aorta of the adult type II: a statistical study and historical retrospect of 200 recorded cases with autopsy of stenosis or obliteration of the descending arch in subjects above the age of two years. *Am Heart J* 1928; 3: 392-421, 574-618.
25. Reifenstein GH, Levine SA, Gross RE. Coarctation of the aorta: a review of the 104 autopsied cases of "adults type" 2 years of age or older. *Am Heart J* 1947; 33: 146-68.
26. Karnell J. Coarctation of the aorta. *Circulation* 1968; 37-38 (suppl V): V35-V44.
27. Maron BJ, Humphries JO, Rowe RD, Mellits ED. Prognosis of surgically corrected coarctation of the aorta: a 20-year post-operative appraisal. *Circulation* 1973; 47: 119-26.
28. Nanton MA, Olley PM. Residual hypertension after coarctectomy in children. *Am J Cardiol* 1976; 37: 769-72.
29. Simsolo R, Grunfeld B, Gimenez M, et al. Long-term systemic hypertension in children after successful repair of coarctation of the aorta. *Am Heart J* 1988; 115: 1268-73.
30. Liberthson RR, Pennington DG, Jacobs ML, Daggett WM. Coarctation of the aorta: review of 234 patients and clarification of management problems. *Am J Cardiol* 1979; 43: 835-40.
31. Olsson P, Sonderlund S, Dubiel WT, Ovenfors CO. Patch grafts or tubular grafts in the repair of coarctation of the aorta: a follow-up study. *Scand J Thorac Cardiovasc Surg* 1976; 10: 139-43.
32. Knott-Craig CJ, Elkins RC, Ward KE. Neonatal coarctation repair: influence of technique on late results. *Circulation* 1993; 88 (suppl 2): 198-204.

การตีบเคบของหลอดเลือดแดงเรอวร์ต้าในผู้ป่วยเด็กที่โรงพยาบาลศิริราช

ดวงมณี เล้าหประลักษิพร, พ.บ.*, สมชาย จารุเจริญพร, พ.บ.* , อภิชาติ นานา, พ.บ.* ,
จารุพิมพ์ สูงสว่าง, พ.บ.* , กฤตย์วิกรม ดุรงค์พิศษ์ภูกุล, พ.บ.*

ได้ทำการศึกษาข้อมูลหลังในผู้ป่วยเด็ก จำนวน 33 ราย ที่ได้รับการวินิจฉัยว่ามีการตีบแคบของหลอดเลือดแดง เออวอร์ด้า จากภาควิชาภูมิเวชศาสตร์ โรงพยาบาลศิริราช ตั้งแต่เดือนมกราคม 2532 ถึง ธันวาคม 2541 พบร้าเป็น เพศชาย 21 ราย (ร้อยละ 64) และเพศหญิง 12 ราย (ร้อยละ 36) อายุตั้งแต่ 1 วัน ถึง 11 ปี (ค่ามัธยฐาน 2 เดือน) ส่วนใหญ่ของผู้ป่วย (ร้อยละ 78.8) ได้รับการวินิจฉัยภายในอายุขวบปีแรก อาการและอาการแสดงที่สำคัญ ได้แก่ หัวใจวาย (ร้อยละ 69.6) ความดันโลหิตที่แข็งสูง (ร้อยละ 36.3) และซึพจรที่ขาเบากว่าแข่น ภาพถ่ายรังสีทรวงอก พบร้าหัวใจโต (ร้อยละ 70) และปริมาณหลอดเลือดไปปอดเพิ่มขึ้น (ร้อยละ 84) ซึ่งสัมพันธ์กับภาวะหัวใจวายและโรคหัวใจพิการ แต่กำเนิดชนิด left-to-right shunt ที่พบร่วม ผลการตรวจคลื่นไฟฟ้าหัวใจ พบร้าปกติ (ร้อยละ 33.3) เวนติคิลชัวโต (ร้อยละ 33.3) เวนติคิลชัยโต (ร้อยละ 22.2) และเวนติคิลหั้งสองข้างโต (ร้อยละ 11.2) ในผู้ป่วยที่อายุน้อยจะ พบร้าเวนติคิลชัวโตบ่อยกว่า จากการตรวจหัวใจวายคลื่นเสียงสะท้อนความถี่สูง และ/หรือการฉีดสารทึบสีบริเวณ หลอดเลือดแดงเออวอร์ด้า พบรอยตีบแคบชนิด juxtaductal บ่อยที่สุด (ร้อยละ 51.5) รองลงมาคือ postductal (ร้อยละ 27.3) และ preductal (ร้อยละ 21.2) การรักษาทางยาประกอบด้วย การควบคุมภาวะ low cardiac output ด้วย prostaglandin E₁ ในกรณีแรกเกิด การควบคุมภาวะหัวใจวาย ความดันโลหิตสูง และการท้าผ่าตัดแก้ไขภาวะตีบแคบของหลอดเลือดในราย ที่มีข้อบ่งชี้ พบร้าได้ผลดี และมีอัตราเสี่ยงต่ำ (ร้อยละ 5) อัตราตายในการศึกษาครั้งนี้ ร้อยละ 9 สาเหตุการตายที่สำคัญคือ อวัยวะล้มเหลวจากภาวะ low cardiac output และการติดเชื้อในปอด อัตราการเกิดการตีบแคบหลังเหลือหลังการผ่าตัดพบ ร้อยละ 5

คำสำคัญ : การตีบเคบของหลอดเลือดแดงเออร์ด้า, ผู้ป่วยเด็ก

ตามที่ เลขาธิการสภาระบุคคล, สมชาย ชาญวิทย์พงษ์, อภิรัตน์ นานา,
ราษฎร์ พุฒิพันธุ์ ทรงส่วน, อดุลย์วิกรม ธรรมรงค์พิมพ์ชัยฤทธิ์,
อดมายาเดุลกุลแพทฯ ๒๕๔๓; ๘๓ (ฉบับพิเศษ ๒): S89-S97

* ภาควิชาภาษาและภาษาศาสตร์, คณะแพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10700