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 Perioperative fluid therapy has received 
considerable attention recently as the adverse effects 
of both fluid overload and restriction are realized in 
different settings. Formulae for type, quantity, or timing 
of fluids in diverse situations are lacking. In addition, 
can we, as perioperative physicians, influence outcome 
or has that already be predetermined by the patient’s 
condition, as many would believe? Many studies 
address these issues. Conflicting results have been 
reported. Critical review of clinical trials reveals that 
current standard fluid therapy is hardly evidence-based 
and has been challenged for years(1). Almost a century 
ago, Cannon pointed out that the administration of 
fluids before operative control of an injury was 
ineffective(2). In the trauma arena Bickell emphasized 
the benefit of surgical correction before resuscitation 
noting that fluids and restoration of blood pressure 
could dislodge a soft clot and cause more bleeding(3). 
However, during both the Korean and Vietnam 
campaigns, large fluid volume resuscitation was 
advised by the United States military to maintain renal 
perfusion (and the Da Nang lung was born).

The Fluid Compartments
 In t racel lu lar  fluid  ( ICF)  makes  up 
approximately 60 to 65% of body water, and 
extracellular fluid (ECF), makes up the other 35 to 40% 
of body water (for all practical purposes, the only 
solvent in the body is water). In essence there is an 
intravascular and an extravascular space. The third 
space is some space in the body where fluid does           
not normally collect in large amounts, or where            
any significant fluid collection is physiologically        
non-functional.

 Fluid shifts occur when the body’s fluids  
move between these compartments. Physiologically, 
this effect occurs by a combination of hydrostatic          
and osmotic pressure gradients. Water moves from        
one chamber into the next passively across a semi-
permeable membrane until the hydrostatic and osmotic 
pressure gradients balance each other. Many medical 
conditions can cause fluid shifts. When fluid moves 
out of the intravascular space (the blood vessels),          
blood pressure can drop to dangerously low levels, 
endangering critical organs such as the brain, heart        
and kidneys. When fluid shifts out of the cells (the 
intracellular space), cellular processes slow down or 
cease from intracellular dehydration. Fluid shifts into 
brain cells can increase intracranial pressure or into 
the lungs and decrease adequate respiration and gas 
exchange. Fluid shifts may be compensated by fluid 
replacement in the case of dehydration or diuretics if 
there is overload or pump (heart) failure.
 Third spacing has been suggested as the 
physiological phenomenon by which body fluids 
accumulate in the third space, a space where this fluid 
has no effect or useful activity. The term is commonly 
used with regard to burns, major trauma, pancreatitis, 
or ileus. In these latter two conditions, fluid leaks out 
into the abdominal cavity. The term also can refer to 
ascites and pleural effusions. Patients who are operated, 
especially when the surgery is long and the incision 
extensive are said to collect third-space fluids and 
become intravascularly depleted despite large volumes 
of intravenous fluid and/or blood replacement. 
However, extensive tissue swelling, (edema), occurs 
when the third space fills with excess fluid as may be 
seen in any dependent parts or in the intestinal walls 
or the lungs. The actual volume of fluid in a particular 
patient’s third space is difficult to quantify accurately 
because identification of this space is difficult. Indeed, 
the “space” may be anywhere. About the operative 
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experience, the third space is said to be related to the 
surgical experience and thus requires special attention. 
It came into being more than 50 years ago.

The Third Space; Discovery
 A surgical team in Texas studied two groups 
of patients in an attempt to understand more closely 
the acute changes that determine the perioperative 
management of fluids and electrolytes(4). The control 
group consisted of five patients undergoing minor 
surgery with general anesthesia (cyclopropane and 
ether) involving minimal tissue trauma and blood loss 
and the second group (13 patients) had elective major 
surgical procedures (cholecystectomies, gastrectomies, 
and colectomies). Plasma volume, red blood cell mass 
and extracellular fluid volumes were measured in all 
patients on two occasions during the operative period 
by using I 131 tagged serum albumin, chromate 51 red 
blood cells and sulphur 35 tagged sodium sulphate, a 
method that had previously been used to measure 
extracellular fluid volume(5). Simultaneously blood 
sampling was made from opposite arms. Samples were 
taken at 10, 20, and 30 minutes after each injection and 
at 20-minute intervals between injections. Sponges and 
urine were also collected. Suction blood and all 
specimens were analyzed for isotopes and hemoglobin 
content. During this time no fluids or electrolytes were 
given. In the first group, the extracellular fluid loss was 
calculated at only 1.4% more than the expected 
decrease in this space from the actual measured and 
calculated plasma loss. The loss of extracellular fluid 
volume in group 2 was calculated as 0% to 28% of the 
original total body extracellular water. Based on these 
findings of a decrease in functional extracellular fluid 
in group 2, the authors concluded that there was internal 
redistribution of fluid associated with surgery (that is, 
the third space), which should be replaced by fluid 
administration. These findings were “confirmed” in an 
exsanguinated dog model, which did better with 
immediate fluid rather than only blood replacement(6). 
Dogs in which only shed blood was replaced died. The 
authors concluded that a deficit in extracellular fluid 
occurred that was not alleviated by blood alone or by 
expansion with plasma; rather a balanced salt solution 
should be given in addition to blood to replace this 
deficit. Arguing against this position, Moore (a surgeon 
from Boston) had postulated some two years before 
that a metabolic response to surgical stress caused 
sodium and water retention and perioperative fluid 
restriction was indicated(7). In a four-part treatise 
published in the New England Journal of Medicine, 

Moore described the several water and electrolyte 
changes that occurred during injury, surgery and 
several diseases, particularly those that related to renal 
problems. He advised that acute water intoxication is 
encountered in postoperative patients during a period 
of postoperative antidiuresis. In other words, secretion 
of antidiuretic hormone in response to stress results in 
the accumulation of water and additional saline or  
other electrolyte solutions is detrimental. Moore also 
noted that anesthetics, degree of surgical acuity, time, 
stress, and co-morbidities should also be taken into 
account. The debate prompted an editorial by the              
two combatants both of whom urged moderation(8). 
Previous regimes had advised either no fluids or 
copious fluids(6). However, Shires studies, while 
emphasizing a need to replace sodium and water, did 
recommend moderate replacement.

Fluid Formulae
 Nevertheless, the excessive fluid doctrine            
to replace the “third space” won. Protocols were 
developed that calculated deficits based on degree of 
trauma, insensible losses and a host of other “variable” 
fluid decreases, all of which were to be replaced with 
balanced salt solutions. The 4:2:1 “rule”, is found in 
all major anesthetic and surgical textbooks, where it 
appears with gospel-like intonation, (1st 0-10 kg 
requires 4 ml/kg, next 11-20 kg 2 ml/kg, then >21 kg 
is 1 ml/kg). The explanation for the “rule” is that “it 
segments the curvilinear relationship between body 
weight and metabolic rate into 3 linear parts”(9). The 
original description of the 4:2:1 rule was derived from 
a paper by Holliday and Segar who, in an attempt         
to simplify fluid requirements devised an arbitrary 
100-50-20 scheme as a baseline for children(10). They 
compared their system to three others(11-13), which 
considered in turn that:
 1. Surface area is a good estimate of water 
expenditure, 
 2. Caloric expenditure is based on age, weight, 
activity and food intake (comparing a rat and a steer) 
and
 3. Urinary volume and insensible losses relate 
to age.
 However, if fluid requirements are proportional 
to metabolic rate and if basal metabolic rate is related 
to body surface area then formulae should take into 
account other factors including neurologic, endocrine, 
pharmacologic, and cardiovascular status, not to 
mention other pathologic conditions and the effects        
of anesthetic agents as Moore had suggested. The 
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concept of preoperative deficit also enters the equation. 
The case for preoperative fluid loading is based on 
several assumptions:
 1. The preoperative fasted patient is 
hypovolemic,
 2. Insensible perspiration increases with 
surgery,
 3. Fluid shifts to the third space must be 
replaced and
 4. The kidneys can regulate any fluid overload. 
 After fasting for eight to 10 hours, the normal 
state after sleep, requirements in the non-comatose 
individual may be little more than one to two cups of 
fluid (240-480 ml). Very few patients are likely to 
require 1,500 to 2,000 ml fluid within the first one to 
two hours of surgery and perhaps a total of three to six 
liters over four to five hours, even with a 2-unit blood 
loss. Pre-operative fasting causes a slight decrease in 
extracellular fluid while maintaining intravascular 
volume. Current fasting requirements encourage      
clear fluids up to two hours before anesthesia. The use 
of evanescent agents ensures a rapid return to 
consciousness and the ability to drink. In addition, 
insensible losses are decreased with laparoscopic 
incisions and by constant irrigation of the wound. 
Finally, antidiuretic hormone release during anesthesia 
severely curtails the ability of the kidneys to remove 
excess fluid.

Fluid Therapy
 There is increasing agreement that excess fluid 
infusion should be avoided after an initial resuscitation 
phase and efforts made to keep patients in neutral or 
negative balance(1,14-16). Indeed, a critique of fluid bolus 
therapy (20-40 ml/kg) indicated weak physiological 
and limited experimental support and is at odds with 
emerging observational data in critically ill patients or 
those undergoing major abdominal surgery(17). Studies 
indicate that over generous fluid infusions contribute 
to complications such as pulmonary edema or 
extravascular lung water, myocardial dysfunction, 
bacterial translocation and development of sepsis, 
wound infection, and multiorgan failure(18,19). Weight 
gain has been linked to increased mortality and 
morbidity including acute renal failure, a greater need 
for postoperative ventilation and longer hospital stay(20). 
Even patients who have undergone relatively simple 
operations but who have received 3-4 liters of fluid 
over a short period may find that it takes many days to 
return to a normal weight. Wedding rings may become 
very tight, for example, requiring that they be cut off 

before ischemia of a finger sets in. Patients who 
developed postoperative blindness after lumbar surgery 
also had a very large positive fluid balance(21). Tissue 
oxygenation is increased by supplemental oxygen and 
not by excess fluids(22). Comparison of the standard 
(>3L, normal saline) versus restricted (<2L, 0.45 
normal saline) protocols for postoperative fluids        
after hemicolectomy indicated significantly more 
complications in the standard group and longer hospital 
stay(23). Rather, intravenous fluid therapy does not result 
in extracellular volume distribution expected from 
Starling’s original model of semi-permeable capillaries 
subject to hydrostatic and oncotic pressure gradients 
within the extracellular fluid(24,25). Other studies have 
reported a reduction of airway complications with fluid 
management fluid protocols (reduction form 6l-4l) 
during cervico decompression and fusion surgeries(26). 
During free flap surgery, flap survival is improved when 
a regimen of decreased fluid administration with 
anticoagulant therapy is instituted(27). Fluid overload 
in the presence of an epidural anesthetic has been 
shown to be deleterious in the healing of colonic 
anastomosis(28). 
 The contribution of the endothelial glycocalyx 
to vascular permeability must be considered. 
Glycocalyx is a general term referring to extracellular 
polymeric material (glycoprotein). While this sugar 
coating material is found in many parts of the body,  
its presence in the vascular system is crucial to the 
integrity of that system(29). The glycocalyx is located 
on the apical surface of vascular endothelial cells that 
line the lumen. Conventional electron microscopy 
shows a small, irregularly shaped layer extending 
approximately 50-100 nm into the lumen of blood 
vessels. The glycocalyx also consists of a wide range 
of enzymes and proteins that regulate leukocyte and 
thrombocyte adherence, since its principal role in the 
vasculature is to maintain plasma and vessel wall 
homeostasis. Because the glycocalyx is so prominent 
throughout the cardiovascular system, disruption to 
this structure has detrimental effects including fluid 
imbalance, and edema as shedding of the glycocalyx 
leads to a drastic increase in vascular permeability. It 
is disadvantageous for vascular walls to be permeable, 
since that would enable passage of some macromolecules 
or other harmful antigens. In fact, maintenance of the 
glycocalyx is crucial to the health of the cardiovascular 
system. The structure is easily and rapidly disrupted 
in sepsis, diabetes, by direct contact with catheters and 
by large fluid infusions leading to an extravasation of 
albumin and fluid and tissue edema(30).
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Which Fluids?
 The choice of fluid has received much 
attention. During short, ambulatory cases with low 
surgical risk, it may be of little importance. Intravenous 
crystalloids remain in the intravascular space for short 
periods, redistributing quickly to soft and damaged 
tissue and dependent areas (gut, lungs, and larynx). 
Edema in the gut wall increases the inflammatory 
response and retards forward movement. A more 
serious complication is abdominal compartment 
syndrome causing respiratory and renal dysfunction 
and increased epidural bleeding during spine surgery(31). 
Excessive crystalloids also increase coagulation 
abnormalities (dilutional or hypercoagulation), the 
need for more blood transfusion and delayed wound 
healing through increased cutaneous edema(32).
 Colloidal expanders include albumin and 
hydroxyethylstarches (HES including Hespan®, 
Hextend®, Voluven®, and Volvulyte®). Albumin, 5%, 
or 25% supplied in 100 ml aliquots is derived from 
pooled human venous plasma, heated to 60 degrees  
for 10 hours to inactivate hepatitis viruses. It contains 
no isoagglutinins and thus the risk of adverse reactions 
is very low. Preparation charges make it significantly 
more expensive. HES in 0.9% sodium chloride is a 
synthetic polymer derived from a waxy starch 
composed of amylopetin. It is supplied in 500 ml bags. 
Dose related side effects include coagulopathy, renal 
failure and tissue storage the newer HES 130/0.4 
(Voluven®) is said to have a lower risk of side effects(33), 
although these claims may not have been sufficiently 
validated(34). An animal study indicated that goal 
directed colloid therapy improved tissue oxygen 
tension and increased microcirculatory tissue oxygen 
tension (pti02) in healthy and perianastomotic colonic 
cells significantly more than goal directed crystalloid 
therapy indicating improved microperfusion and less 
endothelial swelling(35). However, several reports 
including the SAFE (saline versus albumin fluid 
evaluation) study which compared the use of albumin 
alone and saline resuscitation in head injured patients 
found a tendency to increased 24 month mortality in 
severely injured patients who received only albumin 
(up to 2 liters on the first day)(36). Less severely 
compromised patients tended to do better with albumin. 
The same authors found that albumin resuscitation 
produced better survival rates in sepsis patients over 
saline(37). In an ongoing attempt to determine the 
efficacy of colloids, Myburgh et al have mounted a 
7,000 patient multicenter randomized controlled trial 
comparing the effects of 6% hydroxyethyl starch 

(130/0.4) to normal saline for fluid resuscitation                   
in intensive care patients (CHEST)(38). Two Cochrane 
database reviews were unable to determine that 
albumin reduced mortality when compared to saline 
in the resuscitation of patients with burns, trauma, or 
following surgery(39,40). In a review of 3,456 patients 
with sepsis, administration of hydroxyethyl starch 
increased the need for renal replacement therapy and 
blood transfusion(41). The VISEP trial that compared 
intensive insulin therapy with colloid resuscitation 
looked at 10% HES 200/0.5 and Ringer’s Lactate 
resuscitation in severe sepsis(42). The use of intensive 
insulin therapy placed critically ill patients with sepsis 
at increased risk of adverse events due to hypoglycemia. 
Colloid was shown to be harmful and its toxicity 
increased with accumulating doses, especially with 
regard to the renal system. Given that colloid is 
significantly more expensive than crystalloid, its use 
has been questioned. In all these investigations, colloid 
alone in significantly higher doses was compared to 
crystalloids. In addition, the study substance in many 
instances was albumin. The American Society of 
Anesthesiologists has advocated the combination of 
colloids and reduced crystalloids in the prevention of 
POVL(43). The place of colloids may be as an adjuvant 
to crystalloid administration whereby the amounts 
infused of both may be reduced. But it is still not clear 
as to whether administration of colloids or a reduced 
volume of crystalloids results in improved patient 
outcome in all situations or only in certain subsets,       
or if the newer colloids are indeed harmful. The 
PRECISE RCT, now underway may provide light on 
these issues(44).
 There is mounting evidence that blood 
transfusion carries many risks, not only of transmission 
of infection but also of antigen/antibody reactions 
among other consequences. Overall, adverse events 
from transfusions in the US account for about $17 
billion- and in effect add more to the cost of each 
transfusion than acquisition and procedure costs 
combined(45). While some complication risks depend 
on patient status or specific transfusion quantity 
involved, a baseline risk of complications simply 
increases in direct proportion to the frequency and 
volume of transfusion. As a result, many physicians 
have adopted a so-called “restrictive protocol” during 
“blood less surgery” -whereby transfusion is held to a 
minimum- due in part to the noted uncertainties 
surrounding storage lesion, in addition to the very        
high direct and indirect costs of transfusions, along 
with the increasing view that many transfusions are 
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inappropriate or use too many red blood cell units(45). 
However, a restrictive protocol is not an option with 
some especially vulnerable patients who may require 
transfusion to rapidly restore tissue oxygenation
 Intra-operative hemoglobin determinations 
are far from reliable as an indicator of need to  
transfuse. Guidelines from the American Society of 
Anesthesiologists that note that transfusion is rarely 
needed if the Hb level is 7 gm do not take the patient’s 
age, cardiovascular state or other co morbidities into 
account or even the rate of blood loss. (Practice 
Guidelines for Perioperative Blood Transfusion and 
Adjuvant Therapies. Last amended October 25, 2005).
 A time-honored protocol has recommended 
the replacement of fluid:blood in a ratio of 3:1 ml. The 
basis for this regime may be found in the properties 
that allow fluids to leave the intravascular space quickly 
with less than 1/3 remaining after about 20 minutes. 
The extravasated fluid collects in dependent places, 
the abdominal wall, the lungs and all soft tissue areas 
where it is non-functional, rather creating what is a 
harmful situation in a third space. There is no rational 
for such replacement, rather lost blood should be 
replaced more appropriately by colloids, small amounts 
of crystalloids or blood (cell saver technique) if 
indicated by the patient’s situation and co-morbidities. 

Monitoring Fluid Requirements
 Given that the purpose of fluid administration 
is to maintain vascular volume, cardiac function and 
tissue oxygenation, assessment of the adequacy                   
of intravascular volume would seem essential in 
determining the amount, timing, and even type of fluid 
infused. Cardiac filling pressures and central venous 
pressures have been used to guide volume therapy but 
have not been shown to reliably predict volume 
therapy(46). An endotracheal (ET) cardiac output 
monitor incorporated in the cuff of an endotracheal 
tube has been developed. Based on the principle that 
the electrical resistance of blood changes when it 
moves or changes in volume, flexible electrodes on the 
ET cuff utilize information from an arterial pressure 
line and thus continuously calculate stroke volume(47). 
The transesophageal Doppler, supplying continuous 
real time objective data, also monitors preload 
conditions and helps optimize cardiac contractility and 
the effect of afterload impedance on left ventricular 
performance(48). Stroke volume directed administration 
of hydroxyethyl starch or crystalloid in the sitting 
position craniotomy resulted in a 34% smaller volume 
of the colloid and less positive fluid balance, of 

importance in patients with decreased intracranial 
compliance(49).
 However, perhaps of even greater and more 
practical value is goal directed fluid management based 
on pulse oximeter plethysmogram variations (pleth 
variability index; PVI). Decrease in the arterial pulse 
pressure variation induced by mechanical ventilation 
has been appreciated for decades as an indicator               
of hypovolemia. Computerized analyses have 
incorporated information from the pulse oximeter 
arterial wave- form to provide a continuous display of 
arterial pressures, stroke volume, cardiac output, pulse 
pressure variation, and stroke volume variation. In        
one study, PVI-guided fluid therapy resulted in                
less crystalloid administered perioperatively and 
significantly reduced lactate levels(50). Thus, fluid 
versus vasopressor therapy can be tailored to individual 
patient’s needs rather than general application of 
formulae. In a study of patients undergoing high-risk 
surgery, a multicenter study showed that fluid 
administration based on stroke volume variation              
and stroke volume was not only feasible but also 
decreased postoperative wound infection(51).
 A critical complication of excessive fluid 
administration is the development of extravascular lung 
water. Quantification of non-hydrostatic pulmonary 
edema may be used to predict mortality and morbidity 
and be employed as a guide to fluid therapy and 
ventilator strategies(52-54). Bedside assessments may be 
made using dilution methods and by ultrasonography, 
monitors that may soon become standard in ICU 
settings.
 Nevertheless, clinicians continue to rely on 
central venous pressure (CVP) monitoring despite 
many studies indicating that it is insufficient as a 
surrogate parameter for assessing volume status and  
is unable to predict fluid responsiveness(55-57). Only in 
situations of fluid overload may CVP be of minimal 
benefit(58). Moreover, the closed claims analysis of        
the American Society of Anesthesiologists indicated 
that claims related to central catheters not only had 
increased significantly recently but also had a high 
severity of patient injury(59).

Concluding Statement
 It would appear that in most cases there is a 
need to restrict and reevaluate perioperative fluid 
management. As fasting times are reduced and 
anesthetic agents more evanescent, pre-operative 
volume loading is rarely necessary. The classic “third 
space” does not exist. Both crystalloid and colloid 
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overload have deleterious effects. Routine replacement 
of insensible losses is unnecessary. Demand related 
regimens should be followed rather than central 
pressures to improve patient outcome. Restricting 
excessive administration of fluids that are quickly 
redistributed outside the vascular space minimizes 
perioperative shifting. Fluid balance should be 
maintained. Excessive intravenous fluid therapy and 
positive fluid balances correlate directly with patient 
morbidity and mortality. Blood replacement should be 
undertaken with caution.
 However, traditions die hard. Evidenced-
based medicine is still in its infancy. We still believe 
(in spite of all the evidence to the contrary) that blood 
pressure, heart rate, urine output, blood loss can all be 
“optimized” by giving more fluid. So when parameters 
fall out of range, we tend to give more fluids, without 
looking further for other causes of the perturbations. 
Evidence against this action is mounting.
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