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Free Radicals in Primary Knee Osteoarthritis
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Free radicals have an important role in the pathogenesis of knee osteoarthritis. Reactive oxygen
species (ROS) produced by abnormal chondrocyte metabolism exceeds the physiological buffering capacity
and results in oxidative stress. The excessive production of ROS can damage proteins, lipids, nucleic acids,
and matrix components. They also serve as important intracellular signaling molecules that amplify the
inflammatory response. An understanding of oxidative stress involved in this disease might allow the use of
antioxidant therapies in the prevention and/or treatment of knee osteoarthritis.
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Osteoarthritis (OA) is the most common form
of joint disease that currently lacks effective treatment(1).
It is also the leading cause of disability among the
elderly.  It has been estimated that 68% of Americans
(aged over 55 yr) and 35-46% of Thais (aged over 60 yr)
have OA(2,3). The economic burden attributed to the
joint pain and disability of OA amounts to billions of
dollars each year in the USA(4). As the population
demographic in the US and Thailand changes to one
of a predominantly older generation, the increasing
prevalence of OA will become a major public health
problem. OA is a disease of a whole organ system
including, the joint, the cartilage, the subchondral
bone, the synovial capsule and membrane and the
periarticular (connective and muscular) tissues. The
metabolic and structural changes in the articular
cartilage are thought to play a leading role in the initia-
tion and the progression of the disease process.
Articular cartilage is a highly specialized and uniquely
designed biomaterial that forms the smooth, gliding
surface of the diarthrodial joints. It consists mostly of
an avascular, aneural and an alymphatic matrix which
is synthesized by the sparsely distributed resident
cells, the chondrocytes(5).  The extracellular matrix is
extensively composed of collagens (mainly type II

collagen) and proteoglycans (mainly aggrecans) that
are responsible for the functional properties of cartilage.
The adult articular cartilage is in principle working
through the biomechanical properties of its extracellular
matrix, and the destruction of the extracellular matrix of
articular cartilage is the hallmark of OA. However, the
chondrocytes play a decisive role as they are solely
responsible for matrix turnover and maintenance. An
imbalance between the destruction and synthesis of
cartilage is thought to be an essential feature of OA
cartilage degeneration(6,7).

As adult articular cartilage is an avascular
and, thus, perse hypoxic tissue, the cells must be well
adapted to this. The implications of this hypoxic
environment are hardly understood on the molecular
level. Additionally, the role of changes in oxygen (O2)
levels during the process of cartilage degeneration
seems to be of great interest. Oxygen can also be
processed into the so-called reactive oxygen species
(ROS). ROS are molecules like hydrogen peroxide,
(H2O2), ions like the hypochlorite ion (OCl-), radicals
like hydroxyl radical (OH.) or the superoxide anion
(O2.-) which is an ion and a radical at the same time.
ROS involved both in intracellular signaling for cell
physiology, and in cellular destruction(8). Therefore,
this review is intended to give an overview of the role
of oxidative stress only in primary knee osteoarthritis
(knee OA). In the first part, we explained the reactive
oxygen species and oxidative stress. The second part,
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we summarized the current evidences of oxidative
stress in knee OA.

Free Radicals and Oxidative Stress
Free radicals and reactive oxygen species (ROS)

Free radicals can be defined as molecules or
molecular fragments with an unpaired electron(9). This
unpaired electron usually gives a considerable degree
of chemical reactivity to the free radicals. The typical
reactions of free radicals are (a) electron donation
(from a reducing radical) and electron acceptance
(for an oxidizing radical) (b) hydrogen abstraction
(c) addition reaction (d) self-annihilation reaction
(e) disproportionations
Examples are:
(a) HO. + RS- → OH- + RS .

(b) CCl3
. + RH → CHCl3 + R.

(c) CCl3
. + CH2 = CH2 → CH2 (CCl3)-CH2

(d) CCl3
. + CCl3

. → C2Cl6
(e) CH3CH2

. + CH3CH2
. → CH2 = CH2 + CH3-CH3

Because of the high reactivity of the unpaired
electron in free radical molecules, they rapidly react to
adjacent molecules such as DNA, protein, and lipids
and cause alterations in their structures. Free radical
molecules represent a living state from which oxygen-
derived species such as superoxide (O2

-.), hydrogen
peroxide (H2O2), hydroxyl free radical (OH.), lipid
peroxides, or related species can be easily generated,
both intra- and extra-cellularly. Such agents cause
various degrees of toxicity in cells and can lead to
either transient or irreversible damage(8).

Physiological roles for ROS
ROS are produced during normal aerobic cell

metabolism, have important physiological roles in
maintaining cell redox status, and are required for
normal cellular metabolism including facilitating
intracellular signaling pathways and the activity of
transcription factors such as NF-κB, activator protein 1,
C-Myb, p53, and hypoxia-inducible factor-1α (HIF-1α)
(10-12). In addition, ROS produced by phagocytes also
seem to have important physiological roles in priming
the immune system(13,14).

Cellular Oxidant defense mechanism to free radicals
An antioxidant can be most broadly defined

as anything that inhibits an oxidative process. This
includes the binding of potentially catalytic iron and
copper, which can catalyze oxygen free radical produc-
tion, in storage proteins. Antioxidants can inhibit
oxygen free radical production by four mechanisms(15):

(i) removing the transition metal catalyst
(ii) breaking chain reactions
(iii) reducing reactive species
(iv) scavenging initiating radicals
They do not act independently of one

another but rather function co-operatively. The anti-
oxidant has been introduced as a differentiation
between primary and secondary antioxidant defense(16).
The former includes the activities of catalase, super-
oxide dismutase, glutathione peroxidase, and DT-
diaphorase, as well as small molecules such as ascorbic
acid, α-tocopherol, GSH, β-carotein and uric acid. The
latter includes proteolytic- and lipolyitc-enzymes(16),
as well as the DNA-repaired systems(17). Antioxidants
are substances that compete effectively with other
oxidizable substrates even when present in low
concentrations, thereby protecting other substrates
from the damaging effects of ROS.

Evidence for Oxidative Stress in Knee OA
Several lines of evidence suggest a role of

oxidative stress in the pathogenesis of knee OA.
Epidemiologic studies have shown an inverse associa-
tion between dietary intake of antioxidant and OA
progression(18-20). A systematic review of randomized
clinical trials by Canter et al (2007) also showed either
positive or negative efficacy of both vitamin C and
vitamin E in the treatment of knee OA(21). Iron, a catalyst
for hydroxyl radical production from hydrogen peroxide
is present in both synovial tissue and synovial fluid of
knee OA(22-24). Several groups have demonstrated
increased oxidative enzyme activity along with decreased
antioxidant levels in knee OA sera and synovial
fluids(25-29). Because of the highly reactive nature of ROS,
it is difficult to directly demonstrate their presence in
vivo. It is considerably more practical to measure the
‘footprints’ of ROS, such as their effects on various
lipids, proteins, and nucleic acids. Thus, evidence for
oxidative stress or footprints in knee OA has in many
cases been generated by approaches that detect
oxidant-induced changes to these molecules. Studies
of osteoarthritis cartilage and its synovial fluid have
demonstrated oxidative damage to proteoglycan(30,31),
lipid peroxidation products(32,33), and increased carbonyl
groups reflective of oxidation damage to proteins(34).
Evidence of oxidative damage to cartilage, extracellular
collagen, and intracellular DNA has also been demon-
strated.

Generation of ROS in knee OA
Free radicals are formed disproportionately in
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knee OA by abnormal chondrocytes metabolism(35-37).
Nitric oxide (NO.) and superoxide anion (O2

.-) are the two
main ROS radicals can be produced by chondrocytes.
These two highly reactive radicals can further produce
the derivative radicals, peroxynitrite (ONOO-) and
hydrogen peroxide (H2O2), respectively(38). The first
radical, NO. radicals, are synthesized by NO synthase
(NOS) enzyme. In vitro studies demonstrated that
there was an induction of NOS enzyme in chondrocytes
culture cells(39,40). The second radical, superoxide
anion radicals are produced by the enzyme complex
NADPH.  Articular chondrocytes can produce super-
oxide anion by this enzyme system(41-43). In the
presence of ferrous iron, hydrogen peroxide and
superoxide are converted via the Fenton reaction to
highly reactive, aqueous soluble hydroxyl radicals
by chondrocyte and cartilage(44). Recently, it was
reported that chondrocytes can synthesis the enzyme
myeloperoxidase. It was  suggested that chondrocytes
can produce hypochlorous acid(45). In addition,
mechanical compression of chondrocytes can produce
reactive oxygen species(46-49).

Effect of ROS on chondrocyte DNA
Chondrocyte senescence and cartilage

ageing are now considered as an important factor
contributing to the development of knee OA. The loss
of cells is likely to be of multifactorial origin, with
both necrosis and apoptosis being responsible(50,51).
Oxidative damage can initiate apoptosis through
caspase activation and also may lead to irreversible
growth arrest(52). NO. has long been considered as the
primary inducer of chondrocyte apoptosis mediated
by caspase-3 and tyrosine kinase activation(53,54).
However, it has become clear that NO by itself cannot
initiate apoptosis and that the concomitant production
of O2

.- is required, suggesting the role played by ONOO-

in this process(55).
Oxygen free radical induced genomic

instability, including telomere instability and resulting
in replicative senescence and dysfunction in human
chondrocytes as demonstrated by Yudoh et al (2005)(31).
In tissue cultures of articular cartilage explants,
lower antioxidative capacity and stronger staining of
nitrotyrosine were observed in the degenerating
region of knee OA cartilage as compared with the intact
region. During continuous culture of chrondrocytes,
telomere length, replicative capacity and GAG
production were decreased by treatment with ROS.
These effects could be corrected by treatment with
an antioxidant agent. Grishko et al (2008) reported

mitochondrial DNA damage and poor mitochondrial
DNA repair capacity for removing damage caused by
oxidative stress in isolated human articular cartilage
from knee joint OA patients(56).

Effect of ROS on matrix protein synthesis
Exposure of the chondrocytes to H2O2

inhibits proteoglycan and DNA synthesis and depletes
intracellular adenosine triphosphate (ATP) as a result
of a simultaneous inactivation of glyceraldehydes-3-
phosphate dehydrogenase(57,58). Exogenous nitric oxide
(NO.) has suppressive effects on the proteoglycan
production. Both S-nitroso-N-acetyl-L, D-penicillamine
(SNAP: a donor of NO.) and SIN-1(SIN-1,3 morpho-
linosydnimine: a compound generating both NO.

and O2
.-) are reversible and had an inhibitory effect

on glycoaminoglycan synthesis(59,60). Superoxide
dismutase reverses SIN-1 inhibited GAG synthesis
by primary bovine chondrocytes in a monolayer.
Pre-treatment of chondrocyte with SIN-1 or ONOO-

downregulates aggrecan gene expression, suggesting
the involvement of ONOO– in the inhibition of aggrecan
synthesis(61).

Effect of ROS on cartilage matrix breakdown
ROS may cause damage to all matrix compo-

nents. Several in vitro studies have reported the
degradation of cartilaginous tissue slices by ROS-
generating systems. Damage is believed to be due to
direct attack of proteoglycan and collagen molecules
by free radicals. Incubation of soluble type I collagen
with superoxide anion radicals generated by the
xanthine oxidase-hypoxanthine system degrades
collagen and prevents the formation of fibrils by this
collagen(62,63).  OH. can degrade collagen and modify
the amino acid composition(64). Type I collagen exposure
to HOCl fails to degrade collagen but induces the
formation of cross-links of an unknown nature(65).
HOCl also induces hyaluronic acid cleavage and
reduces synovial fluid viscosity(66). Recently, it was
suggested that lipid peroxides could play a key role in
the structural destabilization of cartilage matrix(32).

Conclusion
From these in vitro and in vivo studies, we can

concluded that in knee OA conditions, ROS such as H2O2,
NO., O2

.-, and NO-derived nitrogen species contribute
to cartilage degradation by inhibition matrix synthesis,
by directly degrading matrix components and by
inducing cell death. Altogether, these finding support
the concept of antioxidant therapy to treat knee OA.
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อนุมูลอิสระในโรคข้อเข่าเส่ือมปฐมภูมิ
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อนุมูลอิสระมีบทบาทสำคัญในกลไกการเกิดโรคข้อเข่าเสื ่อม อนุมูลอิสระของออกซิเจนที ่ผลิตจาก
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