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Neurocardiac axis connects the heart and brain through insular cortex, the anterior cingulate cortex, the prefrontal cortex, the amygdala, sympathetic 
nervous system inhibition reflex, and cardiopulmonary baroreceptors. Sympathetic over-activation and dysregulation of fluid homeostasis 
through the brain and neurocardiac axis is the important causes of left ventricular remodeling and symptom aggravation in HF. Modulation of 
autonomic nervous system including activation of the sympathetic nervous system and inhibition of the parasympathetic nervous system are 
manifestations of the clinical syndrome of HF. Activation of neurocardiac axis, especially the sympathetic nervous system, and neurohumoral 
systems, the renin-angiotensin-aldosterone system, by impaired cardiac function, play a major role in the progression of HF. β-blockers have been 
well studied and have been reported to reverse ventricular remodeling and decrease mortality in patients with HF. In addition, vagal stimulation 
showed effectiveness and favorable results in animal studies and may have subjective benefits in HF patients.
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Heart and brain interaction
Neurocardiology was first described in 1985 as the 

interaction between the cardiovascular and autonomic 
nervous systems (ANS) in pathological states(1). The 
neurocardiac axis, a complex neural interaction consisting 
of the insular cortex, the anterior cingulate cortex, the 
prefrontal cortex, and the amygdala was later discovered(2,3). 
Baroreflex sensitivity, ECG changes, and heart rate 
variability (HRV) are also important tools for understanding 
the influence of the autonomic system on the interaction 
of heart and brain activity(4). Sympathetic nervous 
system inhibition reflex includes arterial baroreceptors, 
originate from aortic arch and carotid baroreceptors, and 
cardiopulmonary baroreceptors (Bezold-Jarisch reflex). 
Sympathetic nervous system activation reflex includes 
cardiovascular low threshold polymodal receptors and 
peripheral chemoreceptors (Figure 1)(5).

The Insular Cortex
The insular cortex is a major region of the cerebral 

cortex that plays a crucial role in interoceptive processing, 
including motor control, homeostasis, cardiac perception, 
social emotion, interoceptive awareness, and self-
consciousness(6,7). Moreover, it also modulates the central 
autonomic network by increasing autonomic sympathetic 
activity via the right hemisphere of the insular cortex, thus 
causing cardiovascular autonomic dysfunction(8,9). Heart 
rate variability has been found to be lower in patients 
with right hemisphere stroke with reduced bilateral 
insula volumes. This could be explained by alterations in 
autonomic nervous system function(10,11). These patients 
also had increased risk of arrhythmias and sudden death 
due to autonomic imbalance(12). The stellate ganglia play 
a major role in tachyarrhyth mia following insular cortex 
infarction(13). In rabbits, structural changes in stellate 
ganglia from chronic sympathetic activation have been 
found to cause arrhythmogenesis leading to ventricular 
and atrial arrhythmia as a result of chronic increases in 
sympathetic activity(14). A T wave repolarization dispersion 
during stellate ganglia activation is a prognostic marker of 
ventricular tachyarrhythmia, myocardial infarction, and 
sudden cardiac death(15,16). Moreover, atrial fibrillation, 
atrioventricular block, ectopic beats, sinus bradycardia, an 
inverted T wave, and sudden cardiac death were common 
in patients with a right insular lesion. This supports the 
hypothesis that damage to the insula directly or indirectly 
affects cardiac function.

The Brain Stem
The brain stem, including the external lateral 
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parabrachial nucleus in the pons and rostral ventrolateral 
medulla, plays a role in cardiac sympathetic stimulation 
through excitatory cardiovascular reflexes(17,18). The 
medullary 5-hydroxytryptamine (5-HT) system in the 
brain stem creates an inherent susceptibility that could be 
exploited by exogenous stressors to further increase the risk 
of a life-threatening cardiorespiratory event(19). Brain stem 
lesions are associated with cardiac autonomic dysfunction 
causing ventricular arrhythmias, myocardial infarction, 
bradycardias, and sudden death(3,19-21).

Prefrontal Cortex
Resting high-frequency HRV, which can be used to 

address the interaction of cardiovascular changes with the 
ANS modulation, can fluctuate with the resting state of 
prefrontal cortex neural activity(22). The prefrontal cortex 
area is the region of distinct interest involved in ANS. 
Resting high-frequency HRV is more related to localized 
connectivity than the global resting state activity of 
intrinsic brain networks. Therefore, injury to brain regions 
such as the prefrontal cortex may consequently impair 
cardiac autonomic modulation(13). Valenza et al. recently 
reported a study of cardiovascular autonomic responses to 
emotional and arousal processing at the prefrontal cortex 
and amygdala infract. The study showed significant arousal-
dependent changes of electroencephalographic dynamics 
and instantaneous heart rate throughout the prefrontal cortex 
during positive and negative visual emotional elicitation 
stimuli(23).

Hippocampus
The hippocampus is significantly vulnerable to 

ischemic insult under ultralow flow cardiopulmonary 
bypass from ischemic stress(24). Moreover, significant 
changes following early cerebral hyperperfusion and 
delayed cerebral hypoperfusion in the cortex, thalamus, 
hippocampus, and amygdala/piriform complex were 
reported in rats [52]. Cardiovascular risk factors, including 
hypertension, myocardial infarction, atrial fibrillation, and 
heart failure (HF), are associated with large hemispheric 
brain infarcts, while hippocampal infarcts are associated 
with large hemispheric brain infarcts, HF, and altered 
cardiovascular index as assessed in a postmortem study. 
This is likely due to the fact that large hemispheric infarcts, 
cardiovascular disease, and hippocampal infarcts share 
common risk factors(25). Furthermore, the hippocampus and 
other brain regions are significantly susceptible to cerebral 
ischemia and neuronal degeneration, leading to clinical 
syndrome of myocardial infarction and HF(13).

Autonomic System and the Heart 
Autonomic nervous system manifestations of the 

clinical syndrome of HF include activation of the 
sympathetic nervous system (SNS) and inhibition of the 
parasympathetic nervous system (PNS)(26). The branches of 
SNS and PSN consist of afferent, efferent, and interneuron 
fibers. Sympathetic nervous system fiber innervation 
originates from the right and left stellate ganglia then 
travel along with the epicardial vascular structures into the 
epicardium, myocardium, and end as sympathetic nerve 
terminals at the endocardium.

The parasympathetic nervous system originates 
in the medulla treaveling down to the base of the heart 
carried by the right and left vagus nerves. Both right and 
left vagus nerves then divide into the superior and inferior 
cardiac nerves, eventually merging at the postganglionic 
sympathetic neurons to form a plexus at the base of the heart 
which is called the cardiac plexus(27).

The SNS has two mediators: norepinephrine (NE) and 
epinephrine. These mediators are produced from two sources 
in the body: the sympathetic nerve ending (which releases 
NE directly to into synaptic cleft) and adrenal medulla 
(which releases epinephrine and NE into the circulation). 
Therefore, the total amount of catecholamine presented to 
the cardiac adrenergic receptors (AR) consists of circulating 
NE and epinephrine plus NE released from the sympathetic 
nerve terminals(28). Moreover, epinephrine, which is released 
into the circulation by the adrenal medulla, affects both the 
myocardium and the peripheral vessels(29).

The adrenergic receptors control central and 
peripheral augmentation of the NE (primary sympathetic 
neurotransmitter) and epinephrine (primary adrenal 
medullary hormone). There are three types of ARs: the α1-
AR, the α2-AR, and the β-AR(30). There are two main ARs 
found in the heart: β-AR (90% of the total cardiac AR) and 
α1-AR (10% of the total cardiac AR(31). Previous studies 
in vitro, in animals, and in humans have shown that α1-
ARs control adaptive and protective effects in the cardiac 
myocyte as well as prevent pathological remodeling in 
HF(31,32). In HF, the SNS is over-activated and catecholamine 
levels are elevated. β-ARs are also down regulated and 
dysfunctional(32). The β-ARs in human heart consist of β1-
AR, β2-AR, and β3-AR. In human myocardium, 75% to 80% 
of total β-AR density is β1-AR(33). Sympathetic activation 
through cardiac β-AR increases heart rate, myocardial 
contractility, impulse activity, and pacemaker activity(34). 
β3-AR is now a novel target for cardiomyopathy HF due 
to its differential expression in myocardium to mediate 
negative inotropic effect, lipolysis, and thermogenesis in 
adipose tissue(35).

Muscarinic and preganglionic nicotinic receptors 
were activated by acetylcholine, the neurotransmitter of 
PSN(36). Stimulation of PSN decreases heart rate, however, 
with minimal effect on cardiac contractility. It also inhibits 



J Med Assoc Thai|Volume 106  Suppl. 1|April 2023 S141

NE released from the adrenergic nerve terminal(37). Thus, 
muscarinic receptors in the myocardium map play an 
important role in sympathetic modulation in HF patients(38,39). 

Autonomic system and heart failure
Activation of the neurohumoral systems by impaired 

cardiac function, especially the SNS and renin-angiotensin-
aldosterone system, plays a major role in the progression 
of HF. Beside activation of the SNS, neurohumoral signal 
modulation also activates the central nervous system (CNS) 
and plays another role in cardiac function regulation. The 
circumventricular organ in the lamina terminalis in the 
forebrain area predominantly sense thirst and sodium intake, 
which then regulate volume status in HF. This organ in the 
lamina terminalis area lack off the blood-brain barrier and is, 
thus, able to capture the signals of circulating neuropeptides 
in serum(40).

The center for fluid-balance regulation and sympathetic 
excitation is located at paraventricular nucleus of the 
hypothalamus near the third ventricle in the forebrain 
area(41). The paraventricular nucleus is composed of different 
neuronal subgroups which project to the posterior pituitary 
where they release neuro-humoral transmitters including 
adrenocorticotropic hormone and arginine vasopressin. 
These neuro-humoral transmitters affect sodium and fluid 
retention(42). The paraventricular nucleus also regulates the 
sympathetic drive through the nucleus tractus solitarius, 
which transmit vagal and baroreceptor reflex information 
to the paraventricular nucleus through afferent projection 
neurons where parvocellular neurons in the paraventricular 
nucleus interpret these data and then modulate sympathetic 
nerve activity(43). Sympathetic over-activation from these 
neural networks causes left ventricular remodeling, cardiac 
dysfunction, vascular tree vasoconstriction, and sodium and 
fluid retention through renin release(40).

The majority of the information regarding the role of 
the SNS in the progression and prognosis of HF came from 
studies conducted on subjects with dilated cardiomyopathy 
with reduced ejection fraction(44-49). Activation of the SNS in 
response to myocardial injury includes increased release and 
decreased uptake of NE at the adrenergic nerve endings. This 
activation affects the heart, kidney, and peripheral vascular 
bed. Catecholamine amplifies ventricular contractility and 
heart rate to maintain cardiac output. Sympathetic activation 
also increases systemic vascular resistance leading to 
vasoconstriction and increased venous tone to increasing 
of ventricular preload and, thus, maintains blood pressure. 
Norepinephrine and angiotensin II aggravate sodium 
reabsorption at the proximal tubular, which results in sodium 
retention and volume expansion in HF.

Chronic sympathetic over-activation results in 
myocardial mass hypertrophy and enlargement of the left 

ventricular chamber via cardiac myocyte enlargement, 
interstitial growth, and myocardium remodeling(50,51). 
Therefore, chronic catecholamine exposure causes 
toxicity to cardiac myocytes(52). Stimulation of β1-ARs 
increases apoptosis via a cAMP-dependent mechanism, 
whereas stimulation of β2-ARs inhibits apoptosis via an 
inhibitory G-protein (Gi) pathway(53-56). Previous studies 
have demonstrated that the sympathetic nerve endings are      
likely damaged by NE-derived free radicals(57), and the 
toxic effects of norepinephrine on the sympathetic nerve 
terminals may be prevented by antioxidant therapy(57,58). This 
NE-mediated cell toxicity was found to be diminished by 
a β-AR blockade and mimicked by selective stimulation of 
the β-AR whereas α-ARs were relatively less apparent(59). 
β-blockers have been well studied and have been reported to 
reverse ventricular remodeling(60,61) and decrease mortality in 
patients with HF(62-64). Therefore, one of the three β-blockers 
proven to reduce mortality (bisoprolol, carvedilol, and 
sustained-release metoprolol succinate) is recommended 
for all patients with current or previous symptoms of HF 
with reduced ejection fraction(65).

Heart failure and the brain 
The heart is closely related to the brain. Therefore, it 

stands to reason that the brain may play an important role 
in the progression of HF. Two of the most important causes 
of left ventricular remodeling and symptom aggravation in 
HF are sympathetic over-activation and dysregulation of 
fluid homeostasis through the brain(40). Impaired systolic 
function with low cardiac output in HF patients can diminish 
autoregulation of cerebral blood vessels and, thus, reduce 
cerebral blood flow(66). Moreover, reduced cerebral blood 
flow is associated with cognitive impairment and abnormal 
cerebral metabolism, which indicate poor outcomes in HF(40). 

Vagal stimulation as an autonomic nervous 
system interventions in heart failure

Nowadays, the strategy for HF treatment has mainly 
focused on the recovery of cardiac function. Since the 
pathophysiology of HF is a systemic disease that affects 
the whole body involving cardiovascular insufficiency 
and activation of neurotransmitter hormones, current 
treatment strategies, which are limited to the heart, may be 
unsuccessful(40).

Recent experimental studies in animals have found that 
chronic vagal stimulation has significant benefits in cases 
of HF(67,68). In clinical studies, improvement with regard 
to New York Heart Association functional classification, 
quality of life, and 6 min walk test were reported, as well 
as a significant decrease in left ventricular end-systolic 
volume and a significant increase in left ventricular ejection 
fraction(69,70). A recent randomized controlled trial also 
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reported that quality of life, New York Heart Association 
functional classification, and 6-min walking distance 
were favorably affected. However, overall mortality, 
HF hospitalization, and left ventricular end-systolic 
volume index were not(71). As of this writing, four vagal 
nerve stimulation trials have been completed (CardioFit, 
ANTHEM-HF, NECTAR-HF, INOVATE-HF) and none 
of these trials raised safety issues. However, their findings 
differed with regard to efficacy(70-73). Interestingly, subjective 
outcomes, such as New York Heart Association functional 
classification and quality of life improved in all studies. With 
regard to objective outcomes, CardioFit and ANTHEM-HF 
showed a positive outcome on echocardiographic parameters 
(left ventricular ejection fraction) whereas NECTAR-HF 
and INOVATE-HF did not show any difference between the 
groups who received vagal nerve stimulation therapy and 
the control groups(71,73). A major variation among the three 
trials is the applied vagus nerve stimulation parameters(74). 
It is possible that the lower stimulation intensity used in 
NECTAR-HF was associated with only a small recruitment 
effect of the vagus nerve fibers, which are important for 
the heart rate lowering mechanism as well as the anti-
remodelling effect(75,76). To date, the reasons for the ability 
to transfer effectiveness and favorable results of vagus 
nerve stimulation that have been obtained in animal studies 
to clinical practice using similar vagus nerve stimulation 
parameters are not fully understood(74). 

Summary
The heart and brain are connected through a 

neurocardiac axis consisting of the insular cortex, the 
anterior cingulate cortex, the prefrontal cortex, and 
the amygdala. The important causes of left ventricular 
remodeling and symptom aggravation in HF are sympathetic 
over-activation and dysregulation of fluid homeostasis 

Figure 1. Heart and brain interaction (modified from reference (13) and 
(77)).

through the brain and neurocardiac axis. Autonomic nervous 
system manifestations of the clinical syndrome of HF 
include activation of the SNS and inhibition of the PNS. 
Activation of neurohumoral systems by impaired cardiac 
function, especially the SNS and the renin-angiotensin-
aldosterone system, play a major role in the progression 
of HF. β-blockers have been well studied and have been 
reported to reverse ventricular remodeling and decrease 
mortality in patients with HF. In addition, vagal stimulation 
may have subjective benefits in HF patients.

What is already known on this topic?
Modulation of the autonomic nervous system, 

including activation of the sympathetic nervous system 
and inhibition of the parasympathetic nervous system, are 
manifestations of the clinical syndrome of HF. Activation 
of the neurocardiac axis, especially the sympathetic nervous 
system, and neurohumoral systems, the renin-angiotensin-
aldosterone system, by impaired cardiac function, play a 
major role in the progression of HF.

What this study adds?
β-blockers have been well studied and have been 

reported to reverse ventricular remodeling and decrease 
mortality in patients with HF. In addition, vagal stimulation 
showed effectiveness and favorable results in animal studies 
and may have subjective benefits in HF patients.
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